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Chapter  1 - Introduction 

1 Introduction 

“A man's face as a rule says more, and more interesting things, than his mouth, for it is a compen-

dium of everything his mouth will ever say, in that it is the monogram of all this man's thoughts 

and aspirations”1

 

Nowadays, 3D animation is playing an increasingly important role in the film industry. Movies 

comprising special effects such as Jurassic Park, The Matrix, or Lord of the Rings would not be 

the same, if they could not use 3D animation to give a face-lift to raw film material. Considering 

the constant growth of computer industry and specifically the increase in computational power, 

in 3D animation more realistic results are enabled. In this context, facial animation represents 

one of the biggest challenges. Since the age of three, children recognise and assign facial expres-

sions. The fact that every human being is an expert in identifying facial expressions makes it 

very complicated to produce convenient representations. Conventional methods of facial 3D 

animation such as blend shape-based (cf. Chapter 4.3.1) or joint-based (cf. Chapter 4.3.3.1) sys-

tems have not succeeded in delivering believable photorealistic humanoid characters. Appar-

ently, the last step towards realism is to simulate muscles connected to the skull and to the skin 

to generate proper facial animation. 

 

The research project “Artificial Actors” at the Filmakademie Baden-Württemberg consists of 

programmers and artists who address the task of making the representation of virtual actors 

more credible. 

 

1.1 Abstract 

It is not exaggerated to consider physiognomy as the primary language of mankind. Through the 

appearance of the face, a baby recognises its mother and makes its first mental contact. Scien-

tists even discovered animals using facial expressions as silent communication.  

 Speech is the major form of interpersonal conversation. Nevertheless, the display of emo-

tions or thoughts by individual facial actions is much more intuitive. Besides that, the ability to 

perceive and comprehend facial expressions has been put in our cradle. 

                                                                                                                     
1 Arthur Schopenhauer 
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 Currently, the major developments in 3D animation are concentrated on the authentic rep-

resentations of the human world. Within this complex field of research and development, creat-

ing anatomically realistic facial animation is proving to be one of the most complex challenges. 

Gathering theoretical knowledge in this field appears to be a task as boundless as improving the 

actual techniques of facial animation. 

 In this diploma thesis, we describe a model that uses an anatomically-based virtual represen-

tation of a human head. To make the appearance of the face more lifelike, we simulate a skull, 

skin, fatty tissue, and finally the most important part for facial animation: the muscles. 

 This model is implemented in Alias Maya®. The goal of this diploma thesis is not only to 

achieve best results in terms of appearance but to make it usable for an animator who is suffi-

ciently capable of using Maya® and to make it possible to use it in real-time compromising qual-

ity. We will propose several techniques to simulate the anatomical structure of a head. To get an 

idea why these techniques are introduced, the anatomical constitution of the head will play a 

crucial role in this thesis. The major goal of this thesis is to design a system that combines the 

following qualities: real-time, usability, and the authenticity of appearance. To demonstrate the 

implementation discussed in this thesis, we will elaborate on the software we developed for this 

project. 

 

1.2 Outline 

Following the introduction (cf. Chapter 1), in the second chapter we will address the anatomy of 

the head (cf. Chapter 2). This serves as a foundation for further investigation considering the 

mathematical and physical models used. Besides the structure and behaviour of muscles, the 

constitution of the skin and the skull will be an issue. Special characteristics and functions of 

every component of the head will be described, to give a better understanding of how every 

component can be simulated. 

 At the beginning of Chapter 3, the background to the development of this thesis will be 

discussed. We will be going into Maya® in-depth; especially the script language MEL and the 

Maya® API will be introduced. Finally, we will address some important properties of the C++ 

programming language. 

 In Chapter 4, we will introduce existing approaches to the subject at hand. We will comment 

on prior models relating to this thesis. First, we will present a brief description of the status quo 

of research in this field which is fundamental to understand further illustrations. Next, we will 

delve into several models that are relevant to the simulation of anatomy.  
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In Chapter 5, the final implementation of the software for this thesis will be described. We will 

introduce several experiments that led to the final realisation. The final implementation of the 

software will be elucidated in-depth. 

 Chapter 6 forms the conclusion of this work. The results produced by our software will be 

evaluated. Furthermore, we will provide an outlook on what can be done in the future, pre-

dominantly in terms of optimisation, portability, and applicability in other research activities. 

 
3



 

Chapter  2 - Anatomy of the Head 

2 Anatomy of  the Head 

2.1 The Skull 

The skull represents the uppermost part of the human skeleton. The outer appearance and the 

structure of the human skull are functionally related to the erect posture of the human. The 

spherical shape of the skull eases the free balancing of the head on the spine and serves as an 

ideal protection of the brain and the sense organs. The skull is composed of a number of bony 

portions. 8 can be found in the skull proper (neurocranium), 14 in the facial area (splanchnocra-

nium or viscerocranium), and 7 associated bones (6 ear bones and the hyoid) in the skull. The 

skull proper, also called the cranial area, is the part of the skull directly surrounding the brain 

[MSN05]. The facial region consists of all the other bones of the skull. On the exterior, the cra-

nial bones comprise the two frontal bones constituting the forehead. They fuse together in 

adulthood [MSN05]. 

 

Figure 1: The skull from the front [GC84] Figure 2: Side view of the skull [GC84] 

 

2.1.1 The Cranial Bones (Neurocranium) 

The distinction between the neurocranium and other skull portions is arbitrary due to the fact 

that its bones also participate in the configuration of the skeleton of the face. Bones of the neu-

rocranium are single as well as paired [Hac00I]. The paired bones are represented by the tempo-
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ral and parietal bones (see Figure 2). The single ones are embodied by the frontal, sphenoid and 

occipital bones (see Figure 1). The temporal bones form part of the skeleton of the sides and 

base of the skull. The frontal bone makes up the skeleton of the forehead. It represents a greater 

part of the roof of the circular cavity as well. The sphenoid (see Figure 2) is located at the base 

of the skull, taking part in the formation of part of the skull base, a small part of the side of the 

skull, and parts of the orbital and nasal cavities. The occipital bone forms the skeleton of the 

hind part of the skull [Hac00I]. 

 

2.1.2 The Facial Bones (Viscerocranium) 

The viscerocranium is the region of the skull that forms the bones of the face [Hop00I]. The 

viscerocranium includes the following bones: nasal, lacrimal, maxilla, palatine, vomer, zygomatic, 

and mandible (see Figure 1 and Figure 2). A large portion of the face and neck is derived from 

structures known as pharyngeal arches. There are five pharyngeal arches numbered from 1 to 6; 

the viscercranium is primarily formed from Arch 1 and 2 [Hop00I]. Each contributes not only 

to the development of a particular portion of the skull but also to the creation of specific mus-

cles, nerves, and blood vessels. 

 

2.1.3 Function and Special Characteristics 

The muscles and the bones compose the movement apparatus. The musculoskeletal system 

enables both: flexibility and body strength. The bones determine our human stature. They repre-

sent the framework which supports the body and protects the organs. They maintain the static 

structure of the head. In Chapter 2.3, it will be described how muscles are attached to the skin 

and to the skull. One part of the muscle, the origin, is attached to the skull. Consequentially, this 

part stays fixed to the skull. In Chapter 5.1.2.1, the mandible will play a crucial role because of 

its flexibility. Muscles attached to the lower jaw make up chewing movements including up and 

down as well as side to side grinding motions. 

 As a matter of principle, bones are the easiest elements to implement as they stay rigid and 

do not have to be deformed. On the other hand, they influence the superjacent elements signifi-

cantly so that they have to be implemented as realistic as possible. 

 Unlike the rest of the human skeleton, the skull exclusively contains one joint: the mandible. 

Other joints and bones of the human body are commonly presented in a highly complex hierar-

chy which allows animators to easily control the character’s motion. To animate a skeleton, the 

following methods can be used: forward kinematics (FK), inverse kinematics (IK) or IK/FK 

blending [Ali04a] (cf. Chapter 4.3.3.1, Chapter 5.1.1.2). In Chapter 5.1.1.2, an IK system will 

precisely be discussed. However, for the model used in this thesis, these methods will not mat-
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ter. The skull will just be used as a reference point for the muscles and the skin. It will be repre-

sented as a polygonal geometry.  

 In this thesis, we will introduce a method how to copy the skull and fit it into a completely 

different target geometry (cf. Chapter 6.2.2), e.g. the head. So at last, only the shape of the skin 

has to be renewed but not the skull. By setting reference locators, the skull of the former skin 

can then be matched to the new skin shape.  

 

2.2 The Skin 

The skin covers the body and protects the deeper layers from injury from drying and from the 

invasion by foreign organisms. It is riddled with the endings of many sensory nerves. An adult’s 

skin comprises between 15 and 20 percent of the total body weight. Each square centimetre has 

6 million cells, 5000 sensory points, 100 sweat glands and 15 sebaceous glands [All05]. With all 

these different properties, the skin serves a diverse range of functions [MceNDI]: 

 

• Support - The skin acts as a flexible physical support and cover for underlying tissues. 

• Excretion - Waste materials such as salts and water are removed from the body through 

the skin's sweat glands. 

• Sensory function - Through the extensive network of sensory receptors, we have percep-

tions of pressure, texture, temperature, and pain. 

• Protection - The epidermis prevents dehydration of the internal. It prevents absorption of 

unintentional and potentially hazardous chemicals. 

 

The skin is composed of the epidermis and the dermis. Below these layers the hypodermis is 

located which is not usually classified as a layer of skin. 

 

 

Figure 3: The skin [MceNDI] 
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2.2.1 Epidermis 

The epidermis is the skin’s outermost layer. The thickness of the epidermis varies in different 

kinds of skin. It is the thinnest on the eyelids with .05 mm and the thickest on the soles with 1.5 

mm. The epidermis is composed of five layers [Bra04]. 

 From bottom to top, the layers are denoted as stratum basale, stratum spinosum, stratum 

granulosum, stratum licidum, and stratum corneum. The stratum basale representing the bottom 

layer is composed of cells that are formed like columns. In this layer, the cells divide and push 

already built cells into higher layers. Cells moving into higher layers flatten and maybe die. The 

top layer of the epidermis, the stratum corneum, consists of dead, flat skin cells that peel away 

about every two weeks which means that every new layer of skin has a soft, glowing appearance 

[Bra04]. The lower levels of living cells are supplied with blood from underneath, while the up-

per dead cells solely need water to ensure they are kept fat and smooth. The epidermis is re-

sponsible for the colouring as it holds the skin’s pigment.  

 There are three kinds of specialised cells in the epidermis. Melanocyte produces pigment 

(melanin), the Langerhans’ cell is the vanguard defence of the skin’s immune system, and the 

Merkel’s cell’s function is unknown. 

 

2.2.2 Dermis 

The dermis is the layer that lies below the epidermis; it consists entirely of living cells. It is com-

posed of bundles of tough fibres which give the skin its elasticity and strength. Besides to that, 

there are blood vessels which supply these areas with vital nutrients. 

 The most important function of the dermis is breathing. The countless tiny blood vessels or 

capillaries end here in finely drawn networks from where they feed the outermost skin layer. 

The dermis also determines the tone and the appearance of the skin. 

 The dermis is seamlessly connected to the epidermis. It contains two layers: the papillary 

dermis and the reticular dermis. The papillary dermis, being the thin upper layer of the dermis, 

lies below the epidermis. It is composed of loosely interwoven collagen. In the deeper layers, the 

thicker reticular dermis can be found with its coarser and flat running bundles of collagen. Col-

lagen fibres make up 70 % of the dermis and provide structural stiffness and strength. Elastin 

fibres are loosely arranged in all directions and are responsible for the skin being elastic.  They 

are most commonly located near hair follicles and sweat glands and less in the papillary dermis. 

 

2.2.3 Hypodermis / Subcutaneous Tissue 

The hypodermis is the innermost layer of the skin. It consists of fat and connective tissue that 

contains larger blood vessels and nerves. This layer significantly contributes to the regulation of 
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the temperature of the skin and the body. The size of this layer varies throughout the body and 

from person to person.  

 The hypodermis is a cushion for the skin. It acts as a shock absorber to protect the bones. 

The fat of the hypodermis increases the tension of the skin. The development of the subcutane-

ous fat depends on sex, age, body region, mechanical demands, hormonal influence, nutrition, 

and other factors. Some areas of the face do not contain any fat such as the eyelids and the ex-

ternal ear. This tissue makes up the most important part considering the simulation of skin. 

 

2.2.4 Function and Special Characteristics 

Since skin determines the outward appearance of a human, it has to be realised as believably as 

possible. Therefore, some anatomical characteristics of this organ should be acquainted. In con-

stitutive description, human skin is a non-homogeneous, anisotropic, non-linear plastic visco-

elastic nearly incompressible material. 

 

Non-homogeneity, anisotropic: Soft tissues are multi-composite materials including cells, 

intracellular matrix, fibrous, and other microscopical structures.  

 This means that mechanical properties of living tissues may vary from point to point within 

the tissue. Essential for modelling is the spatial distribution of material stiffness as well as the 

organisation of fibrous structures such as collagen and elastin fibres (cf. Chapter 2.2.2) which 

have some preferential orientation in the skin. Non-homogeneity denotes the dependence on 

coordinates along the same direction. If a material property depends on spatial direction, such 

material is denoted anisotropic. Facial tissue is both non-homogeneous and anisotropic. Never-

theless, there exists no quantitative data about these properties and their importance for model-

ling of relatively thin facial tissue is vague [Gla03]. 

 

Non-linearity, plasticity, visco-elasticity, quasi-incompressible material: Non-linear de-

scribes the behaviour of the skin considering the stress-strain relationship. The response of soft 

tissue is linear at low strains. At average strains, the tissue stiffness increases so the stress-strain 

relationship does not show linearity. At high strains, the stress-strain relationship becomes linear 

again until material destruction occurs.  

 Plasticity stands for the destructibility of the material. To the point the material tears, it 

shows visco-elastic characteristics which denote the combination of time-dependent fluid and 

solid properties. One characteristic of tissue time-dependent behaviour is stress relaxation or 

recovery.  
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Incompressible material refers to material that does not change its volume by the deformation. 

As soft tissue contains both incompressible and compressible material, in this thesis the facial 

tissue is called quasi-incompressible [Gla03]. 

 

The most important property of the skin is its elasticity. The ability to stretch the skin is not the 

same in every region of the human body. Summerfield [Sum83] measured the physical displace-

ments of the facial feature points, especially around the mouth and his results indicate that dis-

placements rarely exceed 25 mm during any kind of articulation. At some parts of the body, the 

skin has an immediate connection to the bones which makes it less flexible. The elasticity does 

not only differ from dissimilar parts of the body but from person to person. The skin decreases 

its elasticity with age and differs from man to woman. Women have weaker connective tissue 

due to hormonal causes. This results in a looser attachment of the skin and the underlying layers 

of tissue. With increasing age, the ability of the skin to regenerate the collagen fibres slows 

down. So the older one grows, the firmer the skin gets. 

 Another significant feature of the skin and very important for the recognition of facial ex-

pressions is the wrinkling, i.e. the skin bulges under muscle compression. These skin bulges may 

remain permanently with increasing age and constitute an essential attribute of the face. 

 At last, when discussing the appearance of the face, bumps and uneven spots have to be 

mentioned. They do not attract attention but, in the majority of cases, their effect is underesti-

mated. Pores, pimples, or gleaming blood vessels change the exterior of a face so much that a 

person with a perfectly smooth skin would not look realistic. 

 

2.3 The Muscles 

The muscles are connected with bones, cartilages, ligaments, and skin either directly or through 

fibrous structures called tendons. In contrast to bones, they refine the general shape of the sur-

face. Muscles compose nearly half of the total mass of a male adult body and fill in almost com-

pletely the space between the bones and the skin.  

 The muscles of the head can be classified into two groups: muscles of facial expressions (cf. 

Chapter 4.1.1) and muscles of mastication. The muscles’ function depends on the movement of 

each muscle, the type of joint it is associated with, and to which side of the joint the muscle is 

fixed to. Muscles are typically attached to two places: one end is fixed to an immovable or fixed 

part. This end is called origin. The other end is attached to the other side of a joint that is able to 

move. In the case of facial muscles that end is not necessarily attached to the bone. The term for 

that end is insertion. When muscles of the face contract, the insertion end is pulled towards the 

origin [DON04]. 
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It is important to say that muscles of the face are responsible for helping to communicate our 

feelings through facial expression. These expressions will be further discussed in Chapter 4.1.1..  

 Muscles of mastication have to prepare food for swallowing and digestion. Four pairs of 

muscles in the mandible make chewing movements possible. In Chapter 4.1.1, these and every 

other muscle of the face that has an important meaning in creating facial expressions will be 

classified more explicitly and they will be implicated with characteristic movements of the face. 

Muscles are composed of muscle fi-

bres. One element within the fibres are 

myofibrils. The basic component of myo-

fibrils is sarcomere. Sarcomeres give facial 

muscles their striped appearance reflecting 

the alternating regions of isotropic (cf. 

Chapter 4.5.2) and anisotropic (cf. Chapter 

2.2.4) material inside muscle cells. The 

isotropic bands contain actin fibres; the 

anisotropic bands contain myosin and actin 

fibres. Both fibres actin and myosin are 

important for cell movements. They can 

be found in all body cells, especially in muscle cells. Muscle cells are grouped together into bun-

dles of fascicles. The muscle is finally made up of groups of these bundles. The fibres in a single 

fascicle are parallel, but the alignment of fascicles in skeletal muscles can differ as well as the 

relationship between fascicles and the associated tendon. 

Figure 4: Sarcomere [Gra05I] 

Four patterns of fascicle organisation form parallel 

muscles, convergent muscles, pennate muscles, and 

circular muscles (sphincters) [May04I] [Pai99]: 

Parallel (Fusiform) muscles: Most of the muscles 

of the face are of the parallel type. This kind of mus-

cle has its fibres lying primarily parallel to its longi-

tude axis. 

Convergent muscles: Convergent muscles are 

based over a broad area but congregate at one at-

tachment point. The chest muscle is one of this 

kind, for example. Figure 5: Muscle structure [Dub04] 
Pennate muscles: In a pennate muscle, the fibres all shape a common angle with the tendon. 

These muscles do not contract as much as a fusiform muscle, but they provide more direct 

force. 
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Circular muscles, sphincter: In a circular muscle, the fibres are concentrically arranged around 

an opening. When the muscle contracts, the radius of the opening decreases. Sphincter muscles 

guard entrances and exits of internal openings like the mouth. 

 

 

Figure 6: Facial muscles, side view [Kae03] 

 

To get a better understanding of the parts that make up the facial musculature, all muscles are 

divided into groups [FacNDI]: 

 

2.3.1 Scalp 

The scalp consists of long, flat, smooth muscles that are able to move forward and backward. 

The limber scalp is very important to the nutrition of the skin and hair, helping to keep the 
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glands and blood vessels healthy. Three little muscles which are positioned in front, above, and 

behind the external part of the ear are also counted among the muscles of the scalp. They move 

very little but intertwine with other muscles and tissues (see Figure 6: muscle 1 – 5). 

 

2.3.2 Mouth 

Three multifunctional muscle groups surround the mouth. They make us pucker or grin, help 

other muscles with chewing and pull the corners of the mouth up or down, and numerous other 

necessary task. One of these task is to give expression and structure to the face (see Figure 6: 

muscle 6 – 13). 

 

2.3.3 Eye 

The muscles of the eye include the eyelid, the surrounding circular muscle and the inside of the 

eye socket. These muscles provide voluntary and involuntary blinking, movement of the eyeball 

as well as tear duct control (see Figure 6: muscle 14 – 18). 

 

2.3.4 Nose 

Around the nose, several small muscles can be found that extend and interconnect with other 

muscles running from the scalp to the upper lip. They control the nostrils so that it is possible 

to open or compress them as well as to lift the upper lip and pull down the brows at will (see 

Figure 6: muscle 20 – 23). 

 

2.3.5 Muscle of Mastication 

The muscles of mastication can be categorised into two different purposes. The first group con-

tains three pairs of muscles that raise the mandible to close the mouth. The second group in-

cludes one pair that can open the mouth and make grinding actions possible (see Figure 6: mus-

cle 24, 25). 

 

2.3.6 Neck 

The neck consists of only one muscle that belongs to the facial musculature. This muscle tenses 

the skin of the neck and pulls corners of the mouth slightly. 

 

2.3.7 Function and Special Characteristics 

Two types of contraction are classified. Isotonic and isometric contraction. If a stimulated mus-

cle is in a state of not being shortened, it simply tenses. The correct term for this is “isometric” 

contraction. Isometric means “same length”. In contrast to the isometric contraction, the isotonic 
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contraction denotes “same tension”. That means the muscle is allowed to shorten. As the longitu-

dinal axis of the muscle shortens, the other two axes extend almost equally so that the volume 

of the muscle stays nearly constant. Since it is proved that the volume is just tending to preserve 

[WG97], further muscle models can extremely be simplified. 

 To characterise a muscle, it has to be stated that it is represented by its shape and its biome-

chanical model of deformable soft tissue. This model claims forces to act along fibre tangents 

[Gla03]. Parallel muscles that are also fusiform muscles have fibres running parallel to one an-

other. Since the cross-sectional area of the tendon is much smaller than the cross-sectional area 

of the central region of the muscle, the fibres must taper significantly as they approach the ten-

don connection. When the fibres in the centre of the muscle are activated, they tend to shorten 

and bulge. Neighbouring fibres push away each other, causing peripheral fibres to be displaced 

farther away from the central axis of the muscle, forming a curve finally. Pennate muscles act 

the same way but can produce their bulge in different directions. Sphincter muscles do not have 

a bulge, but they also try to preserve their volume constantly along their shape. To understand 

why the bulge of a parallel muscle shapes a curved gradient, a closer look at tendons has to be 

taken. Tendons are stiff because they represent the junction to the bones. Thus, they cannot be 

deformed during contraction. As mentioned above, the muscle itself has other properties con-

cerning its stiffness. 

 The geometrical arrangement of the fibres and connective tissue plays an important role in 

determining muscle force and mechanical behaviour. Tendons vary considerably in shape, rang-

ing from flat bands to cylindrical cords. They may be short and thick or long and thin. The 

shape of the tendon affects its physical properties and also determines how the muscle fibres are 

geometrically arranged. Muscle fibres generally converge to tendons in parallel arrangements 

[Kat03I]. 

 Jenson and Davy assess that in biomechanical analysis, whole muscles are usually repre-

sented as single vectors with a certain action line and a variable force magnitude[JD75]. The 

action line of a muscle may be considered to go directly from origin to insertion, or it may be 

assumed to follow the centres of the cross sections of the muscle. The force vector is generated 

by a pennate array of muscle fibres running along the action line of the tendon that contributes 

to the force and motion at the origin or insertion sites. The other components of the muscle are 

perpendicular to the line of action of the tendon and are not involved in forcing along this line. 

The greater the pennation angle, the less force a muscle fibre contributes along the line of action 

[Kat03I]. 
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3 Background Development 

3.1 Alias Maya® 

Maya® is a system for character animation and visual effects designed to be used by a profes-

sional animator. Based on a procedural architecture denoted as the dependency graph, Maya® 

offers incredible flexibility for generating digital images of animated characters and scenes 

[Ali03a]. 

 

With Maya®, 3D models can be created and edited in a variety of modelling formats and they 

can be animated using Maya®’s suite of animation tools. Maya® allows us to create convincing 

visual simulations of rigid and soft body objects interacting in the physical world using computa-

tional dynamics and particle tools. Maya® also provides a range of tools that allow us to render 

an animated 3D scene resulting in photo realistic imagery and animated visual effects [Ali04a]. 

 

3.1.1 Basics 

Graphical User Interface

MEL Command Engine

Dependency Graph

Maya® offers a very flexible workflow that does not imply numerous constraints. In most cases, 

Maya® provides more than one way to solve a problem. 

The user is free to choose his most convenient approach to 

come to a successful solution.  

 Figure 7 shows Maya®’s major components and the 

way Maya® functions. The interaction with the Maya® core 

works over the Graphical User Interface. Every change a 

user makes, every selection and interaction is translated 

into a MEL (Maya Embedded Language) command that is 

conveyed to the command engine. This command engine works as an interpreter that finally 

executes the MEL commands.  

Figure 7: Schematic diagram,  
Maya [Gou03] 

 Most of these MEL commands operate on the dependency graph that represents the scene 

in Maya®. The dependency graph is like a series of instructions storing the information how to 

get the current scene starting from scratch. It embodies the data flow model Alias implemented 

in Maya®. The dependency graph is composed of a quantity of modules called nodes that can 

be connected to each other. Each of these nodes holds a specific information. This information 
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is commonly referred to as attributes. An attribute is a particular property 

of a given node. When an attribute of a node is modified, the depend-

ency graph verifies if the attribute affects any output. If it affects any 

output, each of these outputs is marked dirty meaning that its cached 

value is obsolete and needs to be recomputed (see Figure 8). In Chapter 

3.1.3, the computation of the output data will be illustrated more pre-

cisely.  

 As a result of this structure, nodes can be connected to other nodes 

and a complex network of interacting nodes can be constructed. To con-

struct this collection of nodes, MEL can be used. If a more low-level 

access is required or performance plays a significant role, the API using 

C++ should be preferred. 

Figure 8: Node  
structure [Gou03]

 

3.1.2 MEL 

MEL (Maya Embedded Language) is a powerful command and scripting language that provides 

direct control over Maya®’s features, processes, and workflows. Due to the fact that Maya®’s 

user interface is set up by MEL scripts and procedures, typing in MEL commands is a quick 

alternative to the selection of menu items or executing other actions. 

 The language MEL is derived from UNIX shell scripting. Both scripting languages share the 

property of having commands that are directly executable. MEL commands are interpreted and, 

in contrast to the API data structure, they do not have to be manipulated. 

 MEL includes over 600 commands and 75 functions [Gou03]. The most users generally 

execute MEL commands to perform tasks such as creating custom effects, writing macros, by-

passing the user interface or creating procedures and scripts for custom modelling, animation, 

dynamics, and rendering tasks. In the software of this thesis, MEL serves to prepare the scene 

for further computations. It helps to combine several steps to one bundle that can directly be 

executed. This prevents the user from accomplishing single tasks that are time-consuming and 

inconvenient.  

 As mentioned above, MEL is a simply to use programming language. Following is an exam-

ple of a MEL command to create a sphere: 

 

sphere –radius 27.5 –name mySphere;    // create sphere object 

 

When a MEL command is executed, actually one of Maya®’s C++ functions is called. When a 

sphere is created from the user interface, a “sphere” command is indirectly called which actually 

creates the sphere object. In Chapter 3.1.3, the focus is on creating objects like a sphere. 
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 MEL cannot only create nodes for polygonal (cf. Chapter 4.2.2) or NURBS (cf. Chapter 

4.2.3) objects but deformer nodes that can be used to change control points of an input object, 

for instance. In this software, MEL creates a deformer or connects attributes. It also performs 

tasks such as creating a NURBS sphere or determining the number of control vertices of a 

NURBS curve. But the more important part of this software consists of deformer nodes that are 

developed utilising the C++ API of Maya®. 

 

3.1.3 Maya® C++ API 

The standard C++ programming language can be used to extend existing Maya® functionality. 

With the C++ API, a developer is enabled to create native Maya® plug-ins that fit into the 

Maya® environment seamlessly. These plug-ins are a powerful technique to extend Maya®. API 

stands for “Application Programming Interface” and refers to a set of C++ classes that provide in-

ternal access to Maya® tools. 

 

Developer

C++ API

Maya core

 

Figure 9: Programming Interface [Gou03] 

 

According to Figure 9, the API resides on top of Maya®’s core so the developer has no direct 

access to Maya®’s internal functions and data. On the one hand, having no access to the Maya® 

core leads to several limitations. On the other hand it is a common procedure having the devel-

oper abstracted from the actual details of Maya®’s current implementation. By not exposing the 

present implementation to the developer, Maya®’s engineers are able to change and improve 

Maya®’s core without running the risk to destroy code written by external developers. The API 

also provides a certain level of protection from possible misuse so it can prevent a plug-in from 

deleting critical data. Hence, nearly all methods return an error message which simplifies debug-

ging and preventing from having a false implementation.  

 “Source code compatibility is a goal of the Maya API. That means that plug-ins written for earlier Maya 

releases can recompile without any source code changes in order to create a plug-in for the current version. If a 
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source code incompatibility occurs, the documentation for the new release will contain detailed instructions on what 

changes need to be made to the plug-ins.” [Ali04b]  

 All Maya® class names start with a capital M (cf. Table 1), for example: MObject. MObject is 

used to get an access to all the different data types. In reality, the MObject is just a handle to 

another object inside the core so only the Maya® core knows exactly what this handle refers to. 

To create, edit, and delete such an MObject, the developer needs a handle on it. This handle is 

denoted as function set. The classes that provide suitable function sets begin with an MFn (cf. 

Table 1). For example, an MFnNurbsCurve can be instantiated with an MObject of type 

kNurbsCurve (object kind: NURBS curve). A function set is owned by the user and allows opera-

tions on internal objects of Maya®’s core. 

 

Prefix Logical Grouping Examples 

M Maya® class MObject, MPoint, M3dView 

MPx Proxy object MPxNode 

Mit Iterator class MItDag, MItMeshEdge 

MFn Function set MFnMesh, MFnDagNode 

Table 1: Class name prefixes 

 

All Maya® classes starting with MPx define proxy objects. In this case, proxy means that the 

actual node, a developer defines, is not actually used in the dependency graph. In fact, Maya® 

creates two objects. One is just a referenced second object kept internally. The other one the 

user owns does not exist in the dependency graph. The internal object is the real object, the 

other one is just a proxy. MPxDeformerNode is an example of a proxy. It is derived from MPxNode 

and serves to create a node that has a geometry as input and produces a deformed output ge-

ometry. MPxCommand, for example, enables the developer to create a command like “sphere” (cf. 

Chapter 3.1.2) that allows creating a sphere by determining the control points or polygons. 

 Maya® also provides iterator objects, starting with MIt that allow the developer to iterate 

over elements of an object such as the dependency graph or a mesh. MItGeometry, for instance, 

allows the user to iterate over control vertices of a NURBS curve (cf. Chapter 4.2.3).  

 So why should the developer use the C++ API instead of MEL? With MEL, the user can 

perform almost every task. The C++ API is typically used for specific functionality that cannot 

be found in the MEL interface. Another undeniable advantage of the C++ API is its perform-

ance rate. Since it is not interpreted as MEL and much more machine-oriented, this makes it 

indispensable for elaborate tasks such as intricate calculations or processing of a high amount of 

elements. 
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 Following is an extendable list of all areas and functionality in Maya® which can be ex-

tended using the API [Gou03]: 

 

• Commands 

• Dependency Graph Nodes 

• Tools/Contexts 

• File Translators 

• Deformers 

• Shaders 

• Manipulators 

• Locators 

• Fields (a volume in which various forces can be applied) 

• Emitters (controller that determines the properties of a particle flow) 

• Shapes 

• Solvers (controller of a series of bones for an own IK) 

 

In Chapter 5, the MEL and C++ API implementation will be detailed. For further information 

on specific MEL commands or API classes, the Maya® Online Help can be used. 

 

3.2 .NET – C++ 

The plug-in of this thesis was developed using the Microsoft Visual C++ .NET environment. In 

the preferences window of the .NET project, the developer is able to define events that are 

executed before or after the compilation of the plug-in. With “mcp.exe”, an application provided 

in the Maya® development environment, it is possible to communicate with Maya® by opening 

a command port in Maya®’s script editor. This way, .NET induces to execute scripts to control 

the testing environment. 

 Special classes or methods used in the plug-in will not further be explained as the Maya® 

Online Help provides sufficient information. In addition to using standard C++ statements 

such as the for-loop, the if-statement, or method calls, the plug-in deploys a set of error macros 

that display the error message including the line and the file where the error occurred.  

 A big advantage of the Maya® API is that it prevents from handling intricate memory man-

agement. Memory does not need  to be reserved explicitly for arrays or objects. An easy use of 

methods is enabled without caring about memory garbage, the plug-in produces. 
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4 Previous Work 

4.1 Facial Animation 

4.1.1 The Facial Action Coding System (FACS) 

Dr. Paul Ekman was one of the first scientists who described facial expression, analysed the 

muscular actions that create them, and finally categorised them. Scientists and technicians inter-

ested in pattern detection use FACS in their work when they need to distinguish the exact ac-

tions that the face can perform and to know which muscles produce them.  

 Dr. Paul Ekman found cross-cultural agreement in the recognition of happiness, sadness, 

surprise, fear, anger, and disgust, the top categories of facial expression (Action Units or AUs, 

correlation of muscle movements and facial expression). Thus, he tried to sort them with a 

number of limitations. “One constraint in the development of FACS was that it deals with what is clearly 

visible on the face, ignoring invisible changes […], and discarding visible changes too subtle for reliable distinction. 

[…] Another limitation was that FACS would deal with movement, not with other visible facial phenomena. 

These other facial signs would be important to a full understanding of the psychology of facial behaviour, but their 

study requires a different methodology.” [Ekm78] 

 His approach to systematise the facial language is to break it into minimal units. With these 

minimal units, combinations can be created that produce almost any behaviour. 

At the research project “Artificial Actors” at the Filmakademie Baden-Württemberg, FACS served 

as basis for every approach of character animation. In Chapter 4.3.4, this will emerge more 

clearly. Hence, the results of FACS are the motivation of using a muscle-based system for ani-

mating a virtual actor. Compare http://research.animationsintitut.de where a detailed descrip-

tion of FACS can be found ( Expression Repertoire).  

 In Chapter A.2, each action unit is listed. Compare Figure 6 to locate the facial muscles that 

contribute to specific facial expressions.  

 

 

Figure 10: AUs, results of the Adaptable Facial Setup 
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Figure 10 shows an example of the results created by the “Adaptable Facial Setup” that was devel-

oped at the research project at the Filmakademie Baden-Württemberg (cf. Chapter 4.3.4). The 

first expression is composed of AU 12 and AU 25. The second of AU 16 left and AU 1. The 

third example shows disgust: a composition of AU 10, AU 16, and AU 4. 

 Ekman categorised the types of messages conveyed by nonverbal behaviours. Emotions, 

including happiness, sadness, surprise, fear, anger, and disgust express messages about physical 

and emotional states and are relatively involuntary and stereotyped. Most of the specific mes-

sages are communicated by the face and resemble in all known human cultures. Culture-specific 

symbolic communicators are learned such as the wink or the handshake that convey messages 

similar to short verbal phrases. But it is safe to say that the variety of configurations of equiva-

lent behaviours at this level make them difficult for computational measurement. Therefore, 

FACS is a good foundation for further scientific approaches on this topic. 

 

4.2 Computer Graphics Basics 

“Computer graphics (CG) is the field of visual computing, where one utilises computers both to generate visual 

images synthetically and to integrate or alter visual and spatial information sampled from the real world” 

[Wik01I]. It deals with the conversion of a geometric or mathematical definition of an object 

into a visualisation, a two-dimensional projection that synthesises the appearance of a real ob-

ject. 

 Conventionally, computer graphics creates pictures by generating a very detailed geometric 

description, applying a series of transformations that the viewer is able to perceive, and objects 

in three-dimensional space. If the object is described by a mesh of triangles, finally, the individ-

ual triangles can be coloured. This process is known as rendering. 

 

This section touches only some of the subjects relating to computer graphics. Since we assume 

the readers of this thesis to have basic knowledge about computer graphics, only the issues con-

cerning this thesis will be addressed. This will be the topics where a basic familiarity is recom-

mended to understand further proceedings.  

 

4.2.1 Vectors and Matrices 

4.2.1.1 Vectors 

A vector is a specific type of representing related elements in a one column table format. It 

represents both the direction and the magnitude of a quantity such as forces, velocities, or the 

position of a point in world space. A vector uses the variables x, y and z to show its magnitude 

in its axes in the world coordinate system. A standard vector looks like the following: 
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Equation 1: A standard vector 
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Equation 2: The dot product 

 

The magnitude or length of a vector is defined as: 222 zyxv ++=
r

  

The normalised vector of v is calculated as follows: 
v
vvnorm r

r
r

=  

Vectors enable mathematical procedures such as addition, subtraction, and multiplication. There 

are two methods of vector multiplication. The first produces a scalar result represented in a 

single value including the magnitude of the multiplication (cf. Equation 2). The second produces 

a vector result (cf. Equation 3). The scalar result is determined by a method known as dot prod-

uct and is produced by the addition of the products of all corresponding values of every axis.  

 The second method of vector multiplication is known as cross product. The cross product 

is calculated by using the following formula that produces a vector perpendicular to the plane 

defined by two multiplied vectors [Duc00]: 
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Equation 3: The cross product 

 

The vector type used for computer graphics contains four values denoting the x-, y- and z-axis 

and the homogenous value w. The w value, for example, is used to project three-dimensional 

world coordinates to the two-dimensional screen. The w value is generally set to 1. 

 

4.2.1.2 Matrices 

Matrices comprise their elements in a table. The elements are presented in rows and columns 

forming a grid that is enclosed in brackets. Matrices are used to transform points in 3D space 

and are of size 4 x 4. To transform a vector by a matrix, the vector has to be multiplied by the 

matrix to produce a new vector [Duc00]. 
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Equation 4: Matrix vector transformation 

 

4.2.1.3 Transform Matrices 

There are numerous different matrices which cover a specific kind of vector transformation in 

3D space. Equation 5 shows the translation matrix that moves a point in 3D space relative to its 

origin by the distance dx, dy, and dz [Duc00]:.  
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Equation 5: The translation matrix 
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Equation 6: The scaling matrix 
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Equation 7: Rotation matrix about the 
x-Axis 

 

The scaling matrix transforms an object relative to the origin of the world coordinates. sx, sy, and 

sz denote the scale factor in every dimension (cf. Equation 6). Equation 7 depicts a rotation 

matrix. In the illustrated case, it concerns a matrix to rotate a vector about the x-axis. φ repre-

sents the angle to rotate about.  

 A transformation matrix can serve to describe a transformation from the local space of an 

object to the scene’s world space. To get the transformation matrix that combines the transla-

tion, the scaling, and the rotation matrices they have all to be multiplied: 

 

yx R*R*S*TM=  

Equation 8: Matrix multiplication 

 

4.2.1.4 Inverse Matrix 

If a transformation in space is done by a matrix, it can be done conversely. If one computes the 

world space vector of a local space vector by multiplying the corresponding transformation 
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matrix, the original local space vector can be computed from the world space vector by multi-

plying the inverse transformation matrix. Matrices that shall be inversed are required to be 

square matrices meaning that they require the same amount of columns and rows. There are 

several computation methods to obtain the inverse matrix such as the Gauss-Jordan elimination 

or the Gauss elimination method (also serves for solving a linear equation described in Chapter 

4.2.1.5). 

 The inverse of an n x n matrix A is another n x n matrix A-1 such that A-1A=I where I de-

notes the identity matrix. The solution to the linear system Ax=b can be written x=A-1B (cf. 

Chapter 4.2.1.5 for a detailed description of solving a linear equation) 

 

4.2.1.5 Linear system of equations 

To solve a matrix equation of the form Ax=b, the Gaussian elimination [WolNDI] can be pre-

formed. The Gaussian elimination starts with the system of equations: 
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Equation 9: System of equations 

 

Next, the “augmented matrix equation” has to be composed: 
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Equation 10: Augmented matrix equation 

 

The column vector in the x variables is carried along for labelling the matrix rows. Now, ele-

mentary row operations are performed to put the augmented matrix into the upper triangular 

form[WolNDI]: 
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Equation 11: Upper triangular form 

 

Finally, the equation of the kth row for xk has to be solved, then it has to be substituted back 

into the equation of the (k-1)st row to obtain a solution for xk-1, etc. according to following for-

mula: 
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Equation 12: Solving of every row 

 

Linear equations can often be found in solving geometric problems. An example, where the 

solving of a linear equation is required, is the calculation of NURBS (cf. Chapter 4.2.3) or the 

Radial Basis Function (cf. Chapter 4.3.2.1) 

 

4.2.2 Polygons 

Simple polygonal meshes are used to display geometric detail in applications that are easy and 

interactively to use. These meshes of planar polygonal facets are used to approximate objects in 

a 3D scene.  

 In the simplest case, a polygonal mesh is a structure consisting of polygons represented by a 

list of linked vertex coordinates. Therefore, the description of an object is finally stored in a list 

of vertices. Usually, other geometric information such as polygonal normals, vertex normals, 

edge attributes, or vertex attributes such as texture coordinates (cf. Chapter 4.2.2.4) are also 

stored in this list. 

 Polygonal models can be generated by using a three-dimensional digitiser by a mathematical 

description or manually. If a polygonal mesh is created manually, it usually originates from one 

existing polygon, vertex, or edge. Next, vertices or polygons can be attached. Given a polygon, it 

can be splitted, cut, extruded, subdivided, or it can be merged with other polygons. Vertices can 
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be moved to create or deform a mesh. Consider that moving a vertex changes all adjacent poly-

gons. 

 

4.2.2.1 Generating polygonal meshes 

A polygonal object can be generated using a mathematical description. A commonly used 

method is the creation of a two-dimensional shape described by a curve. This shape is discre-

tised into a polyline. Next, a 3D shape is generated by sweeping this cross-section along a path. 

If the cross-section is scaled, twisted, teetered, or bevelled along the path or morphed into an-

other shape, standard 3D primitives such as a cube, a sphere, cylinder, a cone, or a torus can be 

created. These methods are called “lofting” or “extrusion”. Given a 2D shape lofted or extruded 

along a path, the resulting object is finally discretised into a mesh of polygons. To discretise a 

curve that represents the path or the cross-section, intervals are defined. It can then be stepped 

through these intervals along the curve or around the cross-section and polygons can finally be 

constructed.  

A commonly used method to create 

smooth polygon meshes such as a head is 

called box modelling. Most of professional 

3D applications provide the mesh smooth 

function that smoothes the mesh and tessel-

lates it. Given a box modelled and smoothed, 

an animator is able to create a sphere with 

the correct configurations specified. Next, 

the animator is able to bulge the sphere by 

attaching another box to the existing box. Based on this technique, smooth and detailed objects 

can be generated. In the majority of cases, the original box model serves as a proxy object so 

that manipulation to the smoothed mesh can immediately be noticed. Compare Figure 11 to see 

a simple shape of a hand generated by using the box modelling technique.  

Figure 11: Box modelling a hand 

 Another method to create polygons is by applying procedural generation methods as it is 

done to produce fractal objects. However, these methods are not of particular interest for our 

work. 

 

4.2.2.2 Deforming polygonal meshes 

To deform polygonal meshes, every 3D application provides different methodologies. In most 

cases, the meshes are deformed by configuring attributes of a deformer or by influencing a de-

former object. The twist deformer winds an object according to its attributes such as the angle 
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or the high and low bound. Other examples for deformers where only attributes are set are the 

bend, the flare, the wave, the squash, the taper, or the noise deformer.  

 If the deformer uses another object as influence, the deformer translates the data of the 

input influence object and with the additional information of the attributes, the deformer ma-

nipulates the data of the object. A popular deformer that has an additional influence object is 

the free-form deformer (FFD). This deformer has a lattice as input that surrounds the deformed 

object. By moving vertices of these lattices, the object is deformed. Other deformers of this kind 

are the blend shape (cf. Chapter 4.3.1), the cluster (cf. Chapter 4.3.3.2), or the wrap deformer 

(cf. Chapter 5.1) 

Compare Chapter 5.1 to get a better grasp how a deformer works particularly in Maya® and 

how it is developed. 

 

4.2.2.3 Barycentric Coordinates 

Barycentric coordinates are the coordinates of a 

point defined by its weighted association to other 

points [WolNDI]. The barycentric coordinates 

are commonly used in relation to the vertices of a 

triangle. The barycentric coordinates (b1, b2, b3) 

of a point P with respect to a triangle with verti-

ces V1, V2, V3 are depicted in Figure 12. It is 

important to say that for a point inside the triangle, the coordinates always sum to one. 

Equation 13 shows how to compute the barycentric coordinates and how to define the point 

inside the triangle knowing the barycentric coordinates [Par01]. 

V1

V3

P

V2

Figure 12: Barycentric coordinates of a point 
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Equation 13: Calculation of barycentric coordinates 

 

In the case of our software, the barycentric coordinates are calculated by solving a linear system 

of equation defined by the last formula of Equation 13.  

 Based on Equation 14 and the method we proposed in Chapter 4.2.1.5, the barycentric co-

ordinates can be determined by the following formula: 
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Equation 14: Determination of barycentric coordinates 

 

Barycentric coordinates are used to implicate a triangular polygon of a mesh with a point on its 

surface. For example, if the closest point on a surface to another object has to be defined, the 

barycentric coordinates of this point are stored if the user wants to store the relative position of 

the closest point to the surface. 

 

4.2.2.4 UV Texture Coordinates 

Another method to store relative surface coordinates is to identify UV texture coordinates. UVs 

are 2D coordinates that provide the required information to apply textures to a surface. UVs of 

a polygon need a specific arrangement so that textures appear properly when applied to the 

surface material. The task of the rendering engine is then to find the appropriate UV coordinate 

for pixels inside a polygon.  

 

 

Figure 13: Correlation texture space to screen space 

 

The most common way to bring a 2D texture onto a 3D surface is the inverse mapping. This 

technique brings the information of every single pixel seen on the screen into the image data of 

the texture space. Forward mapping is the other way round whereas a texture coordinate (texel) 

 
27



 

Chapter  4 - Previous Work 

produces a pixel on the screen (see Figure 13). This algorithm causes problems due to holes or 

overlaps in the texture image. 

 If UV texture coordinates serve to locate the relative position of a surface point, overlapping 

polygons lead to indeterminate correlations. Given the UV coordinate of one relative position, 

several allocations may result when mapping back. That is because one UV coordinate inside the 

overlapping polygons shares several points on the surface.  

 Maya® provides a function to prevent overlapping polygons in texture space called “Layout 

UVs”. The texture coordinates will be put into a new layout where all intersecting polygons are 

separated. Avoiding overlapping polygons in texture space the polygonal mesh maintains its 

allocation of UV coordinates independent of shape deformation. We assume that Maya® inter-

nally defines UV coordinates by using a similar approach as introduced in the previous chapter. 

 

4.2.3 NURBS curve 

NURBS [AltNDI] stands for Non-Uniform Rational B-splines. Altmann describes a NURBS 

curve as follows [AltNDI]: a NURBS curve is defined by a set of weighted control points, the 

curve’s order and a knot vector. The advantage and the reason why NURBS are used in many 

3D animation applications is the wide range of flexibility they provide. NURBS are easy to use 

to describe analytical shapes such as a sphere or a cone or free form shapes such as a curve. 

 

A NURBS curve C(u), which is a piecewise rational polynomial function based on vector values, 

is defined as: 
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Equation 15: NURBS function 

 

These B-splines are recursively defined as: 
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Equation 16: B-splines function 

 

Where ti are the knots defining a knot vector U={t0, t1, …, tm}. 

 

4.2.3.1 The Knot Vector 

The knot vector U uniquely determines the B-splines following Equation 16 [AltNDI] . The 

relation between the count of knots (m+1), the degree (k) of Ni,k,, and the number of control 

points (n+1) is given by m=n+k+1. 

 The degree is a mathematical property of the curve that defines how many control points 

per span are available for modelling. It ascertains the curve’s degree to bend. Degree 1 causes 

the control points to be directly connected by straight lines (also denoted as “polyline”). Degree 2 

can have one bend between edit points. Most 3D animation software applies degree 3 (cubic 

NURBS curve) that necessitates four control points per span. 

 The sequence of knots is assumed to be non-decreasing, i.e. ti<=ti+1. Each successive pair of 

knots represents an interval [ti, ti+1] for the parameter values to calculate a segment of a shape. 

Since the knot spacing may be non-uniform, the B-splines are not limited to resemble for each 

interval [ti, ti+1] due to the fact that the degree can change. However, we recommend to use a 

uniform knot spacing in this software as Maya® by default creates NURBS of this kind (cf. 

Chapter 4.2.3.2). Non-Uniform B-Splines must not implicitly have a correlation of knots to 

control points causing further calculations to be more difficult. 

 

4.2.3.2 Edit Points versus Control Points in Maya® 

Maya® provides a tool that enables the user to determine points where a NURBS has to run 

through. These points are called “edit points”. There are several ways how to deform a NURBS 

curve. The user is able to move edit points or control points that have been defined on creation 

of the curve (see Figure 14). Compare Chapter 4.2.3 to get a better grasp how control points 

affect the curve. If the user aims at deforming the curve by dragging points that lie on the curve, 

he is allowed to use edit points. Setting the positions of the edit points by MEL (cf. Chapter 

3.1.2) is also possible. Nevertheless, Maya® does not provide an access on edit points using the 

C++ API (cf. Chapter 3.1.3). If the user drags an edit point, the control points are influenced as 
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well. Hence, if it is possible to control both at once the control points and the edit points the 

computation gets confusing.  

 

 

Figure 14: NURBS curve, control points / edit points 

 

Regrettably, Alias solely provides a function to iterate over control points excluding edit points. 

We opened a support case at Alias to get information how control points are computed inter-

nally due to the condition having the required information about the edit points. However,  they 

could not release additional information as they would free Alias property. We achieved them to 

open a suggest case for their developers to implement a setEP method included in the NURBS 

curve function set. 

 In Chapter 5.1.2, it will turn out why a NURBS curve is used in this software. Moreover, we 

will provide an effective technique to circumvent mixing the use of edit points and control 

points. 

 

4.3 Facial Animation 

One of the most challenging tasks in computer graphics is the construction and animation of 

authentic human facial models. Traditionally, facial models have tediously been animated by 

controlled facial mesh deformations such as the blend shape approach (cf. Chapter 4.3.1) or by 

kinematical approximation of muscle or bone actions as it is done with a facial rig (cf. Chapter 

4.3.3). In the following chapters, we will expand on previous approaches and techniques that are 

nowadays still in use. We will compare the results and evaluate the effort caused to receive ap-

propriate results. 

 

4.3.1 Blend Shapes (Morphing) 

Blend shapes successfully work on any NURBS (cf. Chapter 4.2.3) or polygonal geometry (cf. 

Chapter 4.2.2) morphing a source geometry to the shape of the target. In “Lord of the Rings – The 
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Return of the King”, the computer animated character Gollum was animated using 950 blend 

shapes [SchNDI]. The face of this character was animated by morphing between those 950 

blend shapes where each represents a facial expression. 

 Blend shape animation is a keyframe-based method that allows us to warp a source shape to 

a target shape. Based on a set of control entities such as vertices of a polygonal mesh, a source 

shape has to be created. A copy of the source shape serves for further development on the tar-

get shape. The fundamental condition to blend between two shapes is the same constitution 

concerning the amount of control entities. Assuming a polygonal shape serves as source and 

target shape, both must have an identical vertex count. Every vertex of the source shape is iter-

ated through, and its position is determined. In the same manner, every vertex of the target 

shape with the same index as the vertex of the source shape, is iterated through. The position of 

the source shape’s vertex and its corresponding target shape’s vertex form a line. Interpolating 

between source and target vertices means that it is stepped along this line based on the size of 

intervals. This method is called linear interpolation (abbr. LERP) of the in-betweens. If the 

morph deformer is combined with weights per vertex this interpolation is computed differently 

for each vertex. If a vertex has a weight of 0 assigned, the deformer will not have any effect. 

Given a weight of 1, the vertex will be deformed from source to its target position. A weight of 

0.5, for example, interpolates between the source vertex and the centre between the source and 

target vertex. 

 If several target shapes are used, the relative deformations of each vertex are added. Each 

vertex of different target shapes builds a vector with the vertex of the source shape. Depending 

on how much the single target shape contributes to the final deformation, these vectors are 

summed for each target shape and for every vertex of the source shape. Thus, several facial 

expressions or action units (cf. Chapter 4.1.1) can be combined.  

 There are systems that are content with interpolation of vertex positions. Such as real-time 

game engines that support lightning. The model data probably contains one normal information 

per vertex that has to be interpolated over time. In Maya®, the animator does not have to care 

about the computation of vertex-normals. 

 Due to the fact that computation of blend shape deformers consists of simple linear calcula-

tions, it produces best results concerning performance. The effort concerning time is propor-

tional to the vertex count and the interpolation steps. Interpolating between vertices involves 

simple vector addition and multiplication. This is why it can easily be used in real-time systems. 

 Comparing the results concerning appearance, it must be admitted that the motion sequence 

does not look believable enough. Following closer investigation on real facial animation one will 

notice that it does not resemble linear interpolation between one and another expression con-
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sidering single reference points. In Chapter 4.3.4, we will elaborate on the trajectories of charac-

teristic feature points of the face.  

 The limitations mentioned above can be circumvented using blend shapes for in-betweens 

of the animation. However, creating a blend shape is a time-consuming task. Several techniques 

accelerate the production of facial expressions for one base shape. If the animator does not 

produce the polygonal mesh by using techniques such as box modelling (cf. Chapter 4.2.2.1) but 

by dragging every single vertex, this may lead to enormously time-consuming work.  

 At the research project “Artificial Actor” at the Filmakademie Baden-Württemberg a team of 

artists, computer scientists and us work on different systems to make facial animation in 3D 

computer graphics more credible. Another intention is to accelerate the process of producing 

facial animations. This includes finding a way to reduce the effort caused by creating blend 

shapes for different facial expressions. Therefore, we developed a tool that enables the animator 

to clone facial expressions. In the following chapter, we will comment on this tool in particular. 

 

4.3.2 Expression Cloning Tool 

The aim of the expression cloning tool is the partial reuse of already existing deformation in-

formation especially in the realms of facial animation. The tool allows cloning specific facial 

expressions on completely different target geometries. The tool is integrated as a plug-in in 

Maya®. The Siggraph 2001 paper “Expression Cloning” by Jun-yong Noh and Ulrich Neumann 

[NN01] serves as theoretical background. 

 To get a better grasp how the tool works, it will be explained in the following example: It 

takes a source and a target shape. Both may differ in shape and look but not in their constitution 

concerning holes in the polygonal mesh. For instance, given a head as source shape that has a 

mouth showing a hole, the head which serves as target shape must show the same hole (see 

Figure 15).  

 

 

Figure 15: Corresponding holes 
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Next, the animator has to place locators on the source and the target geometry at characteristic 

places (anthropometric landmarks). If the animator puts a locator on the tip of the nose on the 

source geometry, he has to put a locator at the same place on the target shape. It finally requires 

facial expressions represented by blend shapes that originate from the source shape. Afterwards, 

the expression cloning tool can be applied. The source shape will be morphed and projected 

onto the target shape to receive correlations of the vertices of both shapes. In the following two 

chapters, we will go into detail concerning the morphing and projection algorithm as they both 

serve as foundation for another tool we developed to simplify the workflow of transferring the 

existing muscle-based system. 

 

4.3.2.1 RBF Morpher (Thin Plate Spline Approach) 

To morph the source to the target shape, it requires the feature point locators (anthropometric 

landmarks) of the source shape, the source shape itself, and the corresponding feature points 

locators of the target shape. The theory behind the thin plate spline RBF (radial basis function) 

morpher is to interpolate values between arbitrary feature points in arbitrary dimensions. To be 

more precise: RBF interpolation is basically an N-dimensional to M-dimensional function. 

Given a count of N input and N output samples, the positions of the shape counting M vertices 

are recalculated. 

 

Si1

So1

So2

So3

Si2 Si3

 

Figure 16: RBF morphing of shape with input feature points to output feature points 

 

The thin plate spline RBF morpher is a point-valued function that contains the positions of the 

input and output feature points. With the information of the feature points, every point on the 

shape obtains a new position. This position is calculated depending on the weights every input 

and output feature point produces concerning its original position. Thus, the thin plate spline 

RBF Morpher smoothly interpolates between the feature points. Compare Figure 16 to see how 

the shape is transformed. It will be noticed that the original curvature between the feature points 

will stay the same. Furthermore, it has to be mentioned that a point of the shape that shares the 

same position of an input feature point will share the same position of the corresponding output 

feature point after being morphed. 
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To get a better grasp how this method works, we will explain the approach in three-dimensional 

space. The base function for the calculation is derived from [Ort96I]: 
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Equation 17: Thin plate spline base function 

 

where pi are the feature input points with a count of N.  
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Equation 18: U-function 

 

U is a function that represents the influence of a feature point on the evaluation point depend-

ing on the distance of both points. U has its function derived from the characteristics of a thin 

plate and tries to minimise the bending energy. Other approaches apply other U functions and 

produce similar results. That is because the logarithm is not necessarily fast to compute. 

 The weights wi of these influence coefficients and (a0, a1, a2), defining an additional inclined 

plane, influence the values of the function. Determining the weights wi and the plane (a0, a1, a2) 

is the major intention of defining the function based on the feature points. 

 

To adapt the function, we implement the output feature points: 

 

ii qpf =)(
 

Equation 19: Adaptation of function 

 

In Equation 19, qi denotes the output feature points. It follows that we have N equations that 

are linearly determined by the weights wi and the plane (a0, a1, a2). From the equations men-

tioned above and derived from the work of Taghvakish and Amini, it follows a system  to de-

termine the parameters [TA04]: 
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Equation 20: Splitting up system of equations 

 

If x or y have infinite limits, the system has to be defined so that the interpolated values of the 

function are determined by the base plane. Due to the base plane, four additional equations are 

attached. According to Taghvakish and Amini, it follows [TA04]: 
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Equation 21: Equations to limit system 

 

Combining the two matrices and Equation 21 leads to the following equation [TA04]: 
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Equation 22: Final calculation of the weights and the base plane 

 

With this equation, all parameters of the base function (cf. Equation 17) can be calculated. It 

might be conspicuous that it requires a linear system of equations to be solved to receive the 

essential parameters (cf. Chapter 4.2.1.5). If the weights wi and the plane (a0, a1, a2) are calcu-

lated, just insert them into the base function (cf. Equation 17). 
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 Assume for now a source and a target shape such as a head geometry is given (see Figure 17, 

top). The source shape has to wrap up the target shape. Having set the input feature points 

(with the help of locators) on the source shape and the output feature points on the target shape 

on corresponding locations (see Figure 17, bottom), the thin plate spline RBF morpher can be 

executed. Applying the thin plate spline RBF morpher means that the source shape is morphed 

depending the input and output feature points. For instance, if input and output feature point 

are located on the tip of the corresponding nose, the source shape’s tip of the nose will be 

placed on the target shape’s tip of the nose after being morphed. 

 

 

Figure 17: Top: source and target shape; bottom: corresponding feature points 

 

It is important to know that after having the morpher applied, the shapes are not exactly the 

same. There is still a difference in topology and shape. To receive the source geometry with the 

same shape as the target geometry, the morphed source geometry is projected onto the target 

geometry (cf. Chapter 4.3.2.2). 

 

4.3.2.2 Mesh Fitting 

The mesh fitting algorithm serves to project the source shape onto the target shape so that both 

share the same shape but not the same topology. This means they do not share the same ar-

rangement and count of vertices. The mesh fitting algorithm makes only sense after having the 
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thin plate spline RBF morpher applied. There are two ways of projecting the source to the target 

shape. The first method is denoted as “intersect method”. 

 The intersect method utilises the source shape and shoots a ray from each vertex into the 

direction of its normal. The new position of the vertex is represented by the position where this 

ray intersects with the target shape. This way, every vertex of the source shape lies seamlessly on 

the target shape. 

 The other method is called the “closest point method”. This method considers every vertex of 

the source shape and searches for its closest point on the target shape. This point allocates the 

vertex of the source shape. The experience proved that using the closest point method has to be 

preferred.  

 

4.3.2.3 Generation and Amplification of Action Units 

The source shape should have several equivalent blend shapes for different facial expressions. 

From now on, these blend shapes will be referred to as source blend shapes. Furthermore, we 

will distinguish between original source shape and fitted source shape. Such as the blend shape 

deformer, the motion vector from every vertex of the source shape to its corresponding vertex 

of the source blend shape is calculated. This motion vector is now translated to the space of its 

corresponding position on the target shape to create target blend shapes. 

 A local coordinate system has to be constructed for each vertex of the original and the fitted 

source shape. This local coordinate system is composed of the vertex normal that defines the x-

axis, the first adjacent edge defines the z-axis, and the y-axis is defined by computing the per-

pendicular of the plane the x- and z- axis spans. By comparing the local coordinate systems of 

each vertex of the original and the fitted source shape, transformation matrices can be com-

puted. After having the motion vectors determined, we can multiply these transformation matri-

ces. Consequentially, the motion vectors are moved and rotated so that the resulting facial ani-

mation fits to the target shape that differs from the source shape concerning curvature and ar-

rangement of facial parts. 

 If the source shape is fitted to the target shape, the vertices of the target shape are lying on 

the source shape but not on vertices of the source shape necessarily. They probably lie some-

where on a polygon of the target shape. It is important to say that these polygons are triangles. 

Recall Chapter 4.2.2.3, where a point lying inside a triangle is associated with the triangle coor-

dinates. In the previous chapter we projected the source on the target shape. Now we do the 

same vice versa not to move the vertices but to receive the information about the relative posi-

tions of the target vertices depending the source shape. Due to this information, we can com-

pute barycentric coordinates (cf. Chapter 4.2.2.3). Utilising these barycentric coordinates we can 

calculate the resulting motion vectors of the target shape. Hence, the motion vector of a vertex 
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of the target shape is calculated using its three surrounding points of the triangle of the source 

shape mesh. Each of these three surrounding points have one independent motion vector as-

signed and the barycentric coordinates serve as their coefficients finally adding up to compute 

the resulting motion vector of the target shape: 

 

shape source of torsmotion vec:
scoordinate cbarycentri :
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Equation 23: Calculation of motion vectors 

 

Next, the resulting motion vector of every vertex of the target shape is added to its correspond-

ing vertex. This way, the facial expression is translated and added on the target shape: 

 

 

Figure 18: Workflow of expression cloning tool 

 

Finally, the animator is able to adjust the generated deformations by amplifying or weakening 

the facial expression depending on the original target shape. The amplification is computed by 

scaling the resulting motion vectors as described above. This way, exaggerated or faint facial 

expressions can be created. Thus, if blend shapes exist that cover every area of the face, almost 

every realistic facial animation can be generated by combining and adjusting them. 
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4.3.3 Facial Rig 

As described in Chapter 4.3.1, using blend shapes must not produce best results concerning 

authenticity of animation. Even mixing blend shapes could result in generating unbelievable 

faces if conflicting shapes are used. A facial rig is the easiest and most common approach to 

simulate muscles and bones of a head.  

 Comparing the results of the blend shapes method with the facial rig, it has to be assessed 

that using blend shapes produces better results concerning facial expressions but that generating 

convincing facial animation is a time-consuming task. Following the motion path of  a muscle or 

a bone such as the mandible, it will be noticed that they do neither have a start nor an end point 

where they are moving linearly between. The motion path can be very curvaceous, and it is de-

pending on many influences. Observing characteristic points of the face while moving, it will be 

noticed that they follow a special path and that not every point follows the same path. Ap-

proximating the motion path of every feature point of the face is the intention of a facial rig. In 

Chapter 4.3.3.1, we will describe how to use bones (joints) to set up a facial skeleton. In Chapter 

4.3.3.2, we will introduce a method that describes how details can be put into the animation 

based on the facial skeleton. In Chapter 4.3.3.3, we will show a method to further improve gen-

erated facial expressions.  

 

4.3.3.1 Face Skeleton 

The advantage of using bones is that they are able to rotate about a joint, depending on a degree 

of freedom (DOF). Bones such as the mandible or 

the spine are easy to be synthesised using joints. If a 

facial feature point runs along an arc, bones should 

be preferred to draw the motion path. The animator 

even benefits from the fact that bones can be 

grouped and that they are subject to a hierarchical 

structure.  

 How do the joints have to be set up? The first 

and most important joints that are placed are the 

head and neck joints that simulate the spine. They 

allow us to rotate the head (see Figure 19, (1)).  Figure 19: Face skeleton 

 Next, to make the animation realistic, the animator binds the skin to the skeleton and de-

termines the influence area of each joint. Maya® provides two methods to bind skin to a system 

of joints. The first is the so called “rigid bind” that provides “articulated deformation effects by enabling 

joints to influence sets of deformable object points. […] With rigid skinning only one joint can influence each 

control vertex” [Ali04a] If the animator intends to have smooth transitions between the influence 
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areas of different joints he can use “flexors” that are special deformers which provide round de-

formation effects inside the influence area of the joints. 

 With the smooth bind method, a control vertex can be manipulated by various joints. “By 

default, their influence varies with distance, but you can edit or paint the skin point weighting on a joint-by-joint 

basis.” [Ali04a] Every control vertex has an accumulated weight of 1. The bigger the weight of 

one influence object, the more it is influenced concerning translation or rotation. 

 To guarantee the animation of the head to appear credible, the weights are painted after the 

skin is smooth bound to the skin. The first bottom joint should influence the entire shoulder 

and neck for instance. 

 If the spine is approximated, the jaw area can be rigged (see Figure 19, (2)). The DOF of the 

single joints are limited so that the animation does not appear exaggerated. By painting the 

weights, the animator can determine how strong the mouth area is influenced. 

 Finally, the eye joints can be placed (see Figure 19, (3)). The positioning of the eye joints has 

to be done in particular as the eye lids or the eye balls are treated separately. It has to be pointed 

out that these joints do not really belong to the skeleton as this area does not contain separate 

joints. 

 Detail in facial animation cannot be created using this rough setup of joints. The animator 

places additional joints or he can set up an additional system of cluster deformers (cf. Chapter 

4.3.3.2).  

 

4.3.3.2 Weighted Cluster Deformation 

To gain more control over certain parts of a face, cluster deformers are used. A cluster deformer 

has a handle that can be translated or rotated and 

that influences a set of points depending on their 

assigned weights. It is important to mention that 

a joint internally works as a cluster deformer but 

that a cluster deformer may not have several 

influence objects; its influence area smoothly 

fades to adjacent influence areas. In fact, joints 

are used but as they do not work in a hierarchical 

structure, we will refer to them as cluster de-

formers.  

 They are positioned all over the face wher-

ever an animation takes place. If these locations 

cannot intuitively be found, the FACS (cf. Chapter 4.1.1) can be consulted to understand which 

cluster deformers simulate which muscle and thus which facial expression. Next, the cluster 

Figure 20: Weighted cluster deformation 
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deformers are connected to each other and to additional control entities. Maya® provides sev-

eral methods to create dependencies between cluster deformers or between cluster deformers 

and controllers. One method is the so called “Set Driven Key” method. Another way to bring two 

attributes into connection is to set “Expressions”: the animator connects attributes and creates 

dependencies by combining these connections with arithmetic functions. At this time, groups of 

cluster deformers can be built. If the animator intends the facial animation to be convincing, he 

has to guarantee the handles for the cluster deformers to move along a path. The animator 

draws the according trajectories and constrains the cluster deformer to them. Having a few clus-

ter deformers constrained to a motion path, they can influence the remaining cluster deformers. 

This can be done by creating connections over “Expressions”.  

 Next, weights are distributed to every control vertex concerning each cluster deformer. This 

represents the fine adjustment of the facial animation and must be done intuitively. In Chapter 

6.2.2.2, we will present a method how this process of painting weights can be tremendously 

accelerated. 

 Since using weighted cluster deformation to generate authentic facial animation is not suffi-

cient for smooth skin deformations, resulting facial expression is corrected by adding blend 

shapes. In the following chapter, this approach will be discussed in-depth.  

 

4.3.3.3 Corrective Blend Shapes 

In fact, the corrective blend shapes do not differ from normal blend shapes. Using blend shapes 

on a rigged face is limited the way that they can only be applied on the original shape that means 

at the so called “bind pose”. Therefore, blend shapes are created for the appropriate expression, 

then, the corrected vertices are remapped to the bind pose shape.  

 At the research project “Artificial Actors” at the Filmakademie Baden-Württemberg, a team 

of artists and computer scientists worked on a tool that allows the animator to create a correc-

tive blend shape while the original shape is showing a facial expression. This tool also remaps 

the blend shape to the bind pose and incorporates it into the facial rig system. 

 To remap the corrective blend shape, the transformations of every vertex concerning the 

joints (or cluster deformers) are conversely calculated. Considering the weights of every vertex 

and the transformations the joints cause, the bind pose shape can be determined. This calcula-

tion serves to define the corrective blend shape as it appears at bind pose. The corresponding 

blend shape is involved in the system so that it is driven in when the appropriate facial expres-

sion appears. 

 The whole setup previously described may generate convincing facial expressions. As setting 

up the system is a time-consuming task and controlling the animation is not intuitive enough, 
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decreasing the effort should be a major challenge. In the following chapter, we will present a 

setup that simplifies the process of creating realistic facial animation. 

 

4.3.4 Adaptable Facial Setup 

The “Artificial Actors” research project at the Filmakademie Baden-Württemberg focuses on 

finding new approaches to automate various aspects of character animation. Apart from im-

proving the automation of animation, the major target is to increase the credibility of resulting 

facial animation. 

 “The innovation in the approach of the Adaptable Facial Setup consists of the unusual employment of facial 

motion capture data and its adaptation.” [HBSL04] Facial motion capture data of single, isolated fa-

cial animations according FACS (cf. Chapter4.1.1) is assigned to a set of feature points that are 

located on the face. “The tracked feature points contain nonlinear animation curves which in combination 

precisely describe the motion in all regions of the face during each Action Unit performance. The motion capture 

data is cleaned, normalized and separated from the global head movement” [HBSL04] Regarding the physi-

ognomic characteristics of a head, an animator is able to assure the facial animation to appear 

authentic by placing feature points. In this context, data adaptation means the animator can tune 

and adjust the deformation. Thus, the motion sequences can be amplified, weakened, or the 

animation can even be made unreal (see Figure 21).  

 

 

Figure 21: Data Adaptation for facial deformers [HBSL04] 

 

The resulting animation curves represent the motion paths for the corresponding cluster de-

formers as described in Chapter 4.3.3.2. The weights are painted causing the face deform 

smoothly. Finally, compare Chapter 4.3.3.3 to get a better grasp how the generated expressions 

are fine-tuned.  
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 Comparing the results of the adaptable facial setup with the results of the techniques previ-

ously discussed, it must be concluded that this setup is fast to construct and that it produces 

good looking results. It provides the best composition of an easy-to-handle setup for animators 

and facial animation close to reality. 

 There exist other approaches to animate a face. One approach that only covers details in 

facial animation is the usage of displacement maps. A displacement map lets the animator use an 

image to specify surface on a geometry. Chadwick developed another approach that uses free-

form deformations (cf. Chapter 4.2.2.2) to shape the skin in a multi-layer construction contain-

ing bones, muscles, and skin. There are several more techniques that, as a matter of fact, are not 

as commonly used as the approaches previously introduced. 

 

4.3.5 Pro Muscle-Based Systems 

To understand the motion sequence referring to points of a face, scientists such as biologists or 

even artists always attempted to understand the relationship between exterior shape and the 

structure creating it. To synthesise anatomically caused behaviours, this bottom-up approach is 

mandatory. If an artist paints a human figure, he has to know about its physiques. Animating a 

character is depending on complex biological processes that differ from human to human or 

from human to animal. Gender and age are some important aspects of differing biological con-

stitution of humanoid characters. It has to be stated that until now, the biological complexity 

could not completely be transferred into computer graphics. Hence, using a muscle-based sys-

tem is another step towards the simulation of anatomy close to reality.  

 The results of facial animation are not convincing enough yet. Commonly used approaches 

for facial animation we mentioned in the previous chapters lack naturalness. They claim not to 

be anatomically correct. Furthermore, they do not allow us to use the results obtained by simu-

lating real anatomy. The computation of wrinkles and bulges is a good example. Wrinkles result 

from the skin being compressed and depending on its constitution and on the underlying struc-

tures such as the muscles that deform and move in a certain direction. 

 The constitution of the layers, connecting the surface of the skin to a muscle, has so many 

properties as described in Chapter 2. These properties are responsible for a special behaviour of 

the surface, when contracting a muscle that cannot be captured by just observing the superficial 

behaviours of a body. 

 In addition to previously mentioned reasons, the muscle-based system enables to bridge to 

other research activities. Plastic surgery is only one to name. Simulating muscles may help plan-

ning medicinal interventions (cf. Chapter 6.2.3). 
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 Finally, as our approach is based on the FACS (cf. Chapter 4.1.1) which categorises facial 

expressions depending on muscles, we synthesise muscles to create reasonable and believable 

facial animation.  

 

4.4 Muscle Models 

4.4.1 History 

Every endeavour has been made to construct expedient muscle systems. History proves that 

research activities increase that are committed to realistic simulation of anatomy. In the 19th 

century, the French neurologist Duchenne was the first who described contracting muscle fibres 

by applying electrical currents. He was the first who was able to create artificial facial expression 

on living humans with the help of electricity [Kat03I]. The next milestone in the history of mus-

cle-based systems is the work of Ekman [Ekm78] (cf. Chapter 4.1.1). Nowadays, the FACS still 

is the most commonly used foundation for 3D facial animation. In 1974, Parke [Par74] intro-

duced the first “Parameterized Model for Facial Animation”. Parke’s approach introduces structural 

understanding to facial animation that is supplemented by parameters based on observation. At 

the beginning of the 80’s, Platt and Badler [PB81] presented their work of “Physically Based Mus-

cle-Controlled Face Model”. They propose an abstract structure of muscle fibres with skin, muscle 

and bone nodes which are connected by springs. In 1987, K. Waters [Wat87] presented “A Mus-

cle Model for Animating Three-Dimensional Facial Expression” that, in contrast to the model of Platt 

and Badler, does not regard the skin and muscle as a separate layer.  

 After Waters had introduced his vector muscle model, research committed to muscle-based 

models reached a new level of attention. Many researchers followed Waters’ approach (cf. Chap-

ter 4.4.2), others proposed new methods. 

 In the following chapters, we will introduce the models that we think are milestones in 

terms of muscle-based animation and that have an immediate connection to our approach. As 

many models share common ideas, we will categorise the proposed methods. 

 

4.4.2 Single Layered Mesh Model 

In this section we describe methods for facial animation that are based on the properties of the 

skin, the muscles, and the bones. In contrast to other models, the following approach has only 

one layer, the facial skin layer which is manipulated. The effect of muscle motion is simulated 

directly by the skin neither driven by an underlying shape of a muscle nor by the skeleton. 

 Waters is one of the pioneers in the history of anatomically-based 3D computer animation. 

His paper about “A Muscle Model for Animating Three-Dimensional Facial Expressions” [Wat87] pro-

vides the development of a parameterised facial muscle process. He is the first who breaks down 

the connection of bones, muscles, and skin into one comprising layer. In his opinion, existing 
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facsimile of anatomy does not allow a rich variety of facial expressions. He aims at making facial 

expression controllable by a limited number of parameters: “What is required is not the exact simula-

tion of neurons, muscles and joints, but a model with a few dynamic parameters that emulate the primary charac-

teristics. These methods are relatively abstract, and do not attempt to model the biomechanical or neurophysiologi-

cal mechanisms.” [Wat87] He describes the skin as a mesh of nodes that forces are applied on. The 

forces on every node are depending on the tear resistance of the skin, the muscle strength, the 

distance from muscle to node and from muscle to bone, the squeezing of muscles, and the skin 

thickness. 

 He states that only a proportion of the muscle’s force affects the skin. This proportion is 

calculated as follows: 
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Equation 24: line of contraction on surface 

 

In his model, Waters describes the surface deformation in correlation to a muscle. Feature 

points on the skin surface have a maximum and a minimum influence area and in this area dif-

fering intensities of displacement. 

 

 

Figure 22: Muscle vector model [Wat87] 

 

The left sketch of Figure 22 is showing the displacement of the point P in 2D space. P is dis-

placed towards V1 along the vector PV1 by the factor K, A and R. 

 
45



 

Chapter  4 - Previous Work 

( ) (3)   

(2)   
2

cos

(1)   
2

cos

norm11 PVK*A*R*VP

π*
RR

D-RR

π*
π
µA

sf

s

+=′

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

⎟
⎠
⎞

⎜
⎝
⎛=

 

Equation 25: Displacement of P 

 

See Figure 22 to read the definitions of the parameters determining the displacement. K is the 

muscle spring constant that has to be predefined. Rs represents the radius to start, Rf the radius 

to finish the falloff, both as a distance from V1. D denotes the distance from P to V1. µ is the 

angle between V1V2 and V1P. V1 and V2 denote the start and end point of the muscle vector. 

Modifying K causes different contraction appearances in the same area. The calculation repre-

sented in 2D space can easily be transferred into 3D space by adding the third dimension: the z-

value. To simulate visco-elastic behaviours, Waters creates ramps that are defined to control the 

gradient of the contraction in the area specified by µ. 

 Waters describes the sphincter muscle, in contrast to the parallel muscle, as a muscle with 

one reference point. The feature points of the skin are drawn together towards the reference 

point that defines the centre of contraction. In 3D space, this would mean that in a spherical 

area the feature points are displaced towards the centre point. This spherical area can be made 

ellipsoidal by defining different magnitudes in the direction of the x-, y- and z-axis. The factor 

that finally determines the contraction is the spring constant K. 

 Waters prefers polygonal data structures as they are simply to use. He suggests avoiding 

polygonal intersections by increasing the density of the polygonal mesh at curvaceous areas. For 

curvaceous muscles he suggests to create muscle vectors that curve around an underlying struc-

ture. Finally, he recommends to use groups of muscles to express facial actions as that may take 

place on a basis of a linked structure.  

 

Bui et al. [BHPN03] propose a method that extends Waters’ linear muscle system in terms of 

portability of the muscle vector data. He augments Waters’ model concerning multiple muscle 

interaction and the production of wrinkles. 

 Bui et al. [BHPN03] use the RBF algorithm (cf. Chapter 4.3.2.1) to transfer the existing 

muscle data from a source to a target face. The RBF algorithm he applies is not the same but 

produces similar results as the approach previously described (cf. Chapter 4.3.2.1). In contrast to 
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the expression cloning tool (cf. Chapter 4.3.2), Bui et al. only clone muscle data for each major 

emotion: happiness, sadness, surprise, fear, anger, and disgust: 

 

For expression E=Happiness, Surprise,… 

 RBF_mapping(Msource, Lsource, Ltarget)->Mtarget

 Repeat(Interactive Genetic Algorithm) 

  Show different versions of expression E 

  The user chooses some “favoured” faces 

  The system calculates new faces 

 Until the user satisfies with the faces 

 Add head and tail of muscles expressing E to Lsource and Ltarget

Source Code 1: Pseudo code for muscle data cloning 

 

Source Code 1 describes the steps to transfer the muscles. Lsource denotes the source and Ltarget 

the target feature points (cf. Chapter 4.3.2.1, feature points). Msource denotes the data of the mus-

cles, especially the vertices that describe them. Msource represents the muscle data of the source, 

Mtarget the muscle data of the target face. Mtarget is finally computed. 

 Bui et al. [BHPN03] use an interactive genetic algorithm that allows us to easily verify the 

remaining parameters that define the process of muscle contraction. They presume that a count 

of approximately ten parameters define one muscle contraction. The interactive genetic algo-

rithm is a search algorithm that is based on the rating of a user. These ratings are used to gener-

ate further possible solutions. With the definition of a certain range of one parameter, the algo-

rithm generates a number of possible solutions. This means the user has a choice of several 

variations of one emotional expression. Having several variations means that the parameters 

may change in their defined range. The user picks several versions of the generated solutions. 

With this selection, a new generation of versions of muscles is generated. The process continues 

until a satisfying version is found. This is repeated for every major expression described in 

Source Code 1. 

 Finally, Bui et al. [BHPN03] transfer region divisions for faster computation of the muscle 

contractions. Assuming a polygonal mesh serves as face shape, each vertex has to be considered 

when computing the muscle contraction. Dividing the face shape into regions enables the exclu-

sion of unaffected vertices. This provokes the computation speed to increase. In Chapter 

6.2.2.2, we present a method that works more detailed but has the same effect as the method of 

Bui et al. [BHPN03]. 

 Bui [Bui04] presents an approach to generate bulges and wrinkles. He affirms that “Pseudo-

muscles or parameterization approaches usually fail to create wrinkles because they ignore the underlying anatomy 

of the face” [Bui04]. He differentiates between bumpmapping techniques and physically-based 
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models such as defining wrinkle functions. Bui proposes a technique that extends Waters’ mus-

cle model: 

 

 

Figure 23: Zone of wrinkles and the wrinkle function [Bui04] 

 

All the vertices in the plpkprpt area are included in the calculation of the wrinkle amplitude (see 

Figure 23, left).  
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Equation 26: Wrinkle functions 

 

Equation 26, (1) defines the distance from plpk to ptpr. The wrinkle amplitude at a vertex p is a 

function of the distance l from p to ptpr. The distance l is periodically mapped to [0,2b] with a 

frequency of Nw (cf. Equation 26 (2)). Finally, b is calculated as shown in Equation 26 (3). It has 

to be mentioned that  rounds down a real number to an integer number. ⎣ ⎦...

 Figure 23, right shows the shape of the wrinkle function which is formulated as follows: 
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Equation 27: Function describing series of parabolas 
 

Figure 24: Wrinkles as result of the muscle contraction 
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In Equation 27, ‘a’ denotes the amplitude of the wrinkles. “The wrinkle amplitudes are applied to the 

direction of the normal of the vertices after the vertices are displaced by the muscle contractions. For vertices that 

are inside the zone of influence of multiple muscles, only the maximum wrinkle amplitude caused by these muscle 

is used.” [Bui04] Bui remarks that the parabola function is fast to compute.  

 

Breton et al. [BBP01] propose to enlarge approaches such as Waters’ model by treating difficult 

areas separately: “Muscles cannot perform the animation of particular parts of the face[…], that is to say: eye, 

eyelids, jaw and neck.[…] the lips also need to be identified.” [BBP01] 

 Eye blinking that contains rotating eyes and shutting eyelids is independent from facial ex-

pression. Breton et al. [BBP01] claim the eyeballs and eyelids to be pieces of a sphere. They 

affirm that eyes and eyelids are rotated around the centre and the axis of a sphere. The centre, 

the axis, and the diameter of this sphere receive their dimensions from the two vertices of the 

eye that are most distant to each other. They trigger the eye blinking on an arbitrary timing basis 

but based on biological influence characteristics as well. 

 Given the jaw or the neck, they apply another approach. They define three vertices that 

describe the location of the jaw: vneck, vpivot, vchin. These three vertices form an angle ∠(vneck, 

vpivot, vchin). In the end, all vertices including the area (vneck, vpivot, vchin), are rotated around vpivot. 

Breton et al. [BBP01] point out that maintaining a smooth transition from jaw to neck, the rota-

tion has to fade for the vertices close to the vpivot, vneck segment to generate a kind of swell. 

 The neck is defined by four vertices that limit the neck: one at the top front, one at the top 

back, the bottom front and the bottom back. All vertices between the segment vtop1, vtop2 and 

the segment vbottom1, vbottom2 define the neck, all above vtop1, vtop2 define the head. The centre of 

rotation of the head is defined by the centre of the bounding box that obtains its dimensions 

from vtop1, vtop2, vbottom1, vbottom2. Finally, the rotation fades from the top of the neck maximally 

rotated to the bottom of the neck minimally rotated. 

 In the lips’ case, Breton et al. [BBP01] provide an algorithm that computes a distinction of 

the upper and the lower lip. The user has to determine the boundary points of the lip shape. Via 

several boundary vertices, they generate a distinction between the upper and lower lip even be-

ing the same mesh. Nevertheless, the lips are animated using the sphincter muscle model of 

Waters [Wat87]. 

 

Zhang et al. [ZST04] introduce a technique that enables the adaptation of a generic control 

model of a face depending on the geometry of a specific person’s face. Zhang et al. [ZST04] do 

not explicitly claim to extend Waters’ model. However, their method contains the adaptation of 

muscle data that is similar to the muscle model Waters used to describe muscle contraction and 

the skin deformation the muscle produces. The adaptation algorithm is based on a 2D image of 
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the generic and individual face model. This 2D image represents the ‘projected’ image as it ap-

pears on screen. Next, anthropometric landmarks are determined on the 2D image. Zhang et al. 

[ZST04] propose a technique that computes 3D positions of the landmarks by a projection-

mapping approach. Due to the required information, the adaptation is computed. Similar to 

Waters’ model, he describes a muscle having an attachment and an insertion point. These points 

are transferred to the individual target face and thus the individual face is made controllable. It 

has to be indicated that the approach, Zhang et al. [ZST04] use for the adaptation of the source 

muscle data, is similar to an approach using the RBF morpher (cf. Chapter 4.3.2.1).  

 

Finally, Breton et al. [BBP01] address an important issue that encourages us not to use the same 

model described by Waters [Wat87]. “The displacement vectors do not take curvature into account and 

displacements are carried out according to plan. This does not usually pose a serious problem, as most of the time, 

the muscles are applied in fairly flat areas such as cheeks or forehead.” [BBP01] We do not agree that this 

fact may be remained out of consideration. To receive more detail in realistic facial animation, 

the curvature is implicitly considered. The contraction of the skin is not depending on a vector 

between two vertices that indicate a parallel muscle. The model of Waters does just as little go 

deeper into the issue of volume preservation of muscles and the bulge a muscle can produce. 

 In the following chapters, we concern models that simulate anatomy with real muscle 

shapes. The following approaches do not handle direct skin manipulation without considering 

the properties of a muscle. This means that these approaches will not only have a single layer to 

produce facial animation driven by the motion of a muscle. These models include a separate 

skin, muscle, and skeleton layer. 

 

4.4.3 Deformed Cylinder Model 

Wilhelms and Gelder [WG97] suggest to use triangle meshes to model muscles, bones, and gen-

eralised tissue. For the sake of speed, they consider the muscle to be modelled as a “deformable 

discretised cylinder” [WG97]. Their model allows us to change the shape of the muscles by moving 

joints. The skin is generated by “voxeling the underlying components, filtering, and extracting a polygonal 

isosurface” [WG97].  

 Wilhelms and Gelder take a look at body muscles that have two attachment points. Both 

origin and insertion (cf. Chapter 2.3), can be fixed to a bone. In the case of facial muscles, the 

insertion can also be attached to tissue. Moreover, Wilhelms and Gelder [WG97] claim the di-

ameter and the shape of the muscle to change depending on the relative positions of origin and 

insertion. 
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 In their work, they describe a muscle as a discretised cylinder that is running along a path 

(action line) starting at the midpoint of the origin and ending at the midpoint of the insertion 

(see Figure 25).  

 The cylinder is divided into 7 sections that are separated by 8 elliptical cross sections. The 

cross sections form an elliptical shape. These ellipses have their centre lying on the curve path 

previously described and depicted in Figure 25, bottom. Each ellipse is discretised on a basis of 

intervals and in the same succession as the radial points of the shape. The polygonal mesh is 

finally composed of the elliptical shapes’ radial points connected to neighbouring cross sections. 

Each cross section lies on a plane that has its orientation obtained from a local x, y, z coordinate 

system. The origin of the local coordinate system lies in the centre of the cross section. The z-

axis is pointing towards the curve path that deforms the cylindrical muscle. The x-axis stands 

perpendicular to the z-axis and points away from the bone. The y-axis is perpendicular to the x- 

and z-axis. The x- and z-axis also define the dimension of the elliptical cross section. To imitate 

the volume preservation of the contracted muscle, the dimensions of the y-axes are manipulated 

along a curved path from origin to insertion so that at the centre of the muscle the most signifi-

cant bulge appears. 

 

 

Figure 25: Muscle as discretised, deformed cylinder model [WG97] 

 

The approach of Wilhelms and Gelder allows us to further adjust the muscle geometry. One 

component that facilitates to modify the geometry is a pivot that can be placed. The curve path 

of the deformed cylinder is then running through this pivot with the insertion and origin posi-

tion at its ends. Furthermore, this pivot is assigned to one slice. The model enables to control 
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each slice, its dimensions in particular. The parameters that can be set are the height and width 

of each slice, the x- and y-value, the location in x-, y- and z-coordinates, and the orientation of 

the slice. This implies that each slice can additionally be rotated. Wilhelms and Gelder affirm 

that nearly all muscles can be simulated with this model [WG97].  

 The muscle animation is controlled by the motion of the skeleton joints. The joints control 

the origin, the insertion, and the pivot of the deformed cylinder. The dimension of every slice is 

recalculated when the muscle contracts to simulate volume preservation. Wilhelms and Gelder 

make a distinction between the rest and the present length whereas the rest length denotes the 

length of the curve path in rest position [WG97]. Present length denotes the length of the curve 

at present. This length changes during animation where the curve path deforms. The slices are 

scaled in x- and y-direction by the factor gthpresentlenrestlength / . Regrettably, Wilhelms and Gelder 

[WG97] do not source the following statement: “In any case, exact volume preservation of muscles is not 

biologically justified.” [WG97]. 

 The attachment of the muscles to the skin and its consequential skin deformation that Wil-

helms and Gelder [WG97] provide in their proposal is described in Chapter 4.5.1. 

 

In our work, we also follow their approach to a certain degree and experiment with some of the 

techniques Wilhelms and Gelder propose. In Chapter 5, we will explain why we decided to omit 

major approaches provided by Wilhelms and Gelder. 

 

4.4.4 Ellipsoid Model 

Our experience revealed that so far, the use of ellipsoids is the most commonly used technique 

to synthesise muscles. It represents an simply to use method that claims to generate realistic 

simulations and a fast computation. In the movie “Hellboy”, this approach is used as basis for 

muscle-based animation. 

 Wilhelms [Wil94] was one of the first to present a muscle model based on the use of ellip-

soids. The following equation shows the specification of an ellipsoid: 
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Equation 28: Ellipsoid 

 

Based on this equation (Equation 28, left), it can be easily identified if a particular point is inside 

or outside the ellipsoid. a, b, c denote the major axes. The model enables applying geometric 
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transformations on the ellipsoid such as translation, scaling and rotation. In Wilhelms’ model, a 

muscle is composed of three ellipsoids: one for the muscle belly and two for tendons (see Figure 

26, left). 

 

MUSCLE
Proximal (Origin)
Tendon

Muscle Body
Distal (Insertion)
Tendon

FLEXED STATE

Muscle Axis from Origin
    to Insertion

EXTENDED STATE

Proximal Segment
Bone Distal Segment

Bone

Origin Point
Insertion Point

 

Figure 26: Muscle and bones in flexed and extended state [Wil94] 

 

Wilhelms uses the term “muscle coordinate frame” which signifies the local coordinate system of the 

muscle ellipsoid. This coordinate frame includes all geometric properties of an ellipsoid. The 

muscle coordinate frame arises from the origin point of the muscle, and its z-axis points towards 

the insertion. These reference points stay fixed to the bone while animated. Thus, when the 

joints move, the muscle is still spanned between the origin and the insertion. It has to be men-

tioned that each of the tendons makes up 20 % of the distance from insertion to origin whereas 

the muscle body makes up 60 %. The width of each ellipsoid has a portion of 40 % of the entire 

muscle length. This represents a secure method of constant volume preservation. Since the 

muscle grows larger towards its centre, it does not start at the bone segment but begins and ends 

slightly shifted from the fixed attachment points. 

 The muscle bulge is computed as follows: the muscle length is stored by the time it is cre-

ated and attached (lrest). If the joints move, the current length of the muscle changes (lpresent). The 

new scale dimensions are received by relating to the factor lpresent/lrest. If V is the ellipsoid vol-

ume and r is a/b in rest position, it comes to following conclusion: 
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Equation 29: New ellipsoid dimensions 
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Finally, the ellipsoid obtains its orientation by matching the z-axis with the vector defined by 

origin and insertion. 

 

Scheepers et al. [SPCM97] extend Wilhelms model [Wil94]. They modify Wilhelms approach by 

obviating the use of three ellipsoids describing a fusiform muscle (cf. Chapter 2.3). Tendons are 

not placed along one shared axis. Each of the tendons has a unique start and end point. The 

start points are attached to the bones defining the insertion and origin location. The end points 

define the start and end point of the muscle axis. In contrast to Wilhelms model, they maintain 

the length of the muscles while animated. As a matter of fact, the tendons remain stiff in lifelike 

anatomy. 

 Scheepers et al. [SPCM97] propose an approach to simulate muscles with more complex 

shapes: the so called “multi-belly muscle model”. Neither the insertion nor the origin are represented 

by a point. Both are defined by a spline curve (cf. Chapter 4.2.3). The muscle bellies with a 

count of n receive their two attachment points by determining a position on the two curves (see 

Figure 27, left). To compute the orientation of the muscle bellies, an up-vector is required. This 

up-vector is defined by the normal vector of the plane spanned by three sample points de-

scribed in Equation 30 and Figure 27, right. The number n of bellies is determined. Next, the 

bellies are attached to the insertion and origin curve by sampling the curves in certain intervals 

defined by the count of bellies and the curve length. 
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Figure 27: Location and orienting of muscle bellies [SPCM97] 
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Equation 30: Sample points 

 

Since this approach offers satisfying results in terms of authenticity and a rapid computation, 

this technique can compete with all other approaches. Ellipsoids are primitives which are fast 

and easily to generate and deform. Therefore, the interactive creation of character sets is en-

abled. This strategy convinces many people interested in 3D character animation. 

 Miller and Thuriot developed a tool named “Maya TechniquesTM | Custom Character Toolkit”. 

This tool is based on the approach of Scheepers et al. [SPCM97]. In addition to the approach of 
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Scheepers et al. [SPCM97], they provide the methodologies and techniques involved in building 

a character pipeline. As previously indicated, Thuriot already applied these techniques for the 

muscle-based animation of “Hellboy”. 

 The technique introduced by Scheepers et al. [SPCM97] also serves as the foundation for 

the cgmuscle-project [SE04I]. The members of this community-based project address them-

selves to the creation of an open source muscle-based system. 

 

4.4.5 Mass-Spring Model 

Muscle deformations can be simulated by using one of the following approaches: biomechanical 

models, physically-based models as well as geometric models [NT98]. Nedel and Thalmann 

[NT98] work on a physically-based model. They describe the forces a muscle produces along 

lines of action (cf. Chapter 2.3.7) that all run through the origin and insertion of the muscle. 

Each line can be embodied by a polyline that composes the muscle model having the shape of 

the muscle associated. Nedel and Thalmann [NT98] use an approach that is based on the usage 

of mass points linked by springs. Every single point has two horizontal and two vertical 

neighbours in a polygonal mesh. The action line serves as the up-reference of each point.  

 Given a scarce geometry of a fusiform muscle (cf. Chapter 2.3), they propose a technique to 

automatically resample the muscle shape. Based on the number of slices and the count of points 

referring to each slice, the algorithm serves to evaluate the entire action line. The algorithm is 

responsible for drawing an imaginary circle around every appropriate position. Between the 

action line and the slice, imaginary lines are drawn. Each line and the initial muscle shape inter-

sect. The resulting intersection represents the new muscle point. This allows us to reconstruct 

muscle models obtained by 3D scans.  

3D scans can be received by the National Li-

brary of Medicine. This library originates “The 

Visible Human Project®” [VHP86I] that is con-

cerned with the creation of complete, anatomi-

cally detailed, three-dimensional representations 

of the usual male and female human bodies. They 

sectioned a human cadaver (see Figure 28) and 

created a digital image dataset of the body. They 

then divided the body into a quantity of voxels so 

every point of the body became discretised. Every 

voxel carries distinct information, for example, 

which part of the body it belongs to. Vice-versa, by determining a part of the body, a 3D model 

can be generated. This model lacks smoothness, causing the model of Nedel and Thalmann 

Figure 28: Cross section of a human body[VHP86I]
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[NT98] to be difficult to apply. That is the reason why they provide a technique to resample the 

muscle shape. 

 Nedel and Thalmann [NT98] describe the deformation of a muscle due to mechanical laws 

of particles. The model incorporates parameters that describe the nature of the particle. The 

positions of adjacent particles influence the particle. To simplify calculation processes, they only 

take the surface of the muscle shape into consideration and exclude volume characteristics. The 

surface mesh is composed of points. Each point corresponds with a particle in the physical 

model. The set of particles has a mass density of m. The force on one particle consists of three 

forces that add up to one: 
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Equation 31: Resultant force on each particle x 

 

In their model Nedel and Thalmann use vectors to represent forces. 

 Elasticity is simulated by linking each particle to its four neighbours by springs (see Figure 

29). The force of one so called Hook’s [NT98] spring is calculated as shown in Equation 32 (1).  

 

(2)    )()(

(1)    )()(
3

0
∑

=

=

−−=

j
ispringielasticity

restiispring

xfxf

xxksxf

j

 

Equation 32: Elasticity force 

 

Figure 29: Elastic model of the muscle surface[NT98] 

 

Figure 30: Angular spring[NT98] 

 

The coefficient of the degree of a spring’s elasticity is referred to by ks. “xi is the spring’s oscillating 

extremity and xrest is the rest position of this extremity.” [NT98] The elasticity force on one particle is 

then calculated by adding the forces of all springs connected to its four neighbours. We use the 

terms horizontal or vertical, width or height, to refer to the orientation of the action line.  
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 The curvature or torsion force determines the bending and twisting of a muscle surface. 

Therefore, Nedel and Thalmann [NT98] create another kind of linear spring: the so called “angu-

lar spring”. Given an angular spring, each particle x0 has four neighbours x1, x2, x3, x4. The parti-

cle x0 has two angular springs. The first one with the angle defined by the vectors x0x1 and x0x3 

(see Figure 30), and the second one with the angle between x0x2 and x0x4. See Figure 30, where 

an angular spring is spanned from x0 to the midpoint of the line between x1x3 and from x0 to the 

midpoint of the line between x2x4. The springs are set in rest position. Nedel and Thalmann 

denote the two generated vectors as vertical and horizontal relating to the action line represent-

ing the up-vector [NT98]. Including these angular springs into the spring network causes the 

shape to be preserved. They claim to be capable of controlling the muscle volume by changing 

the angular spring coefficients. Their model provides no volume preservation, but it enables to 

control the degree of deformation with the preservation of shape integrity and homogeneity. 

 The geometric constraint forces are the third kind of forces acting on the muscle shape. 

These constraints are used to control the muscle by external forces. Only some selected points 

are constrained this way. Two points, the insertion and the origin, are attached to bones or to 

the skin. Other points can be influenced by another internal structure such as organs or other 

muscles when colliding. Nedel and Thalmann [NT98] implement these forces by using inverse 

dynamics: “We specify the constraints actuating on a point and calculate the force necessary to compel the point 

to obey these constraints.” [NT98] 

 Nedel and Thalmann [NT98] compute the muscle motion by simulating the action line mo-

tion. The action line influences the muscle deformation. For each particle of the muscle surface, 

laws of motion are used. Nedel and Thalmann apply the commonly used Lagrange’s equation: 
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Equation 33: Lagrange's equation of motion 

 

They utilise a fourth order Runge-Kutta method (cf. Chapter 4.4.5.1) to integrate the ordinary 

differential equations as it is more stable than the Euler’s method (cf. Chapter 4.4.5.1). 
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Rohr [Roh04] wrote his diploma thesis at the University of Applied Science Furtwangen and is 

now studying “Technical Director” at the Filmakademie Baden-Württemberg. In his diploma thesis 

about “Virtual Characters”, he presents another approach based on a mass-spring system. Rohr 

[Roh04] does not orient the muscle shape according to its action line. Instead, he distinguishes 

between two states of how the muscle may appear. One is the muscle in a relaxed, the other in a 

tense state. He provides a technique to blend between both states without the use of a conven-

tional blend shape deformer (cf. Chapter 4.3.1). Rohr [Roh04] makes use of a mass-spring sys-

tem to synthesise the muscle. A system based on mass-springs benefits from properties such as 

elasticity or the ability to react on external forces such as gravity or collision forces. 

 Rohr [Roh04] makes a distinction between a mass-spring system for 2D objects and 3D 

objects. Given a 2D object such as a triangle, the mass-spring system has each adjacent particle 

connected by springs. A triangle implies three springs between each particle. In 3D computer 

graphics, cloth patches are commonly represented in 2D networks. 3D networks are composed 

of at last six springs, for example a tetrahedron. 2D networks have their springs lying on their 

surface. Given a closed 3D object such as a muscle, the third dimension is essential to guarantee 

the mesh to preserve its shape (see Figure 32). Rohr [Roh04] attempts to preserve shape integ-

rity by setting cross connection springs. The selection of particles, he connects in a three dimen-

sional way, is almost arbitrary.  

 

Figure 31: Two dimensional network Figure 32: Three dimensional network 

 

The network shown in Figure 31 acts in accordance to the model Lander [Lan99a] uses to de-

scribe a cloth simulation. Structural springs (see Figure 31) do not guarantee the object not to 

collapse. “I really want to keep the model from shearing too much. That is, I want the space between diagonal 

elements of the model preserved” [Lan99a]. Therefore, Lander creates shear springs (see Figure 31) 

running along the diagonals between adjacent particles. Tests revealed that structural and shear 
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springs in conjunction do not assure shape preservation since the shape is not maintained in 

extreme situations such as the cloth patch falling on the floor. He completes his model by in-

cluding bend springs (see Figure 31) that describe the curvature of the shape at each particle. 

Due to the fact that Rohr works with a closed 3D object, he extends Lander’s model [Lan99a] as 

previously mentioned.  

 Since Rohr [Roh04] does not use an action line to control the shape of the muscle, he pro-

poses another model to deform the muscle adequately. He introduces a technique called dy-

namic blend-shapes. Dynamic blend-shapes work the same way as real muscles, as they contract 

via muscle springs. The contractile myofibrils (cf. Chapter 2.3) describe the counterparts of 

these muscle springs. As mentioned above, Rohr uses two states to describe the muscle defor-

mation. Finally, dynamic blend-shapes interpolate between the two states the springs accept. A 

state of a spring is defined by its length. Therefore, two initial states for every spring are as-

signed. This can be achieved by modelling the muscle in a relaxed and a contracted state. Thus, 

every spring obtains two fixed values for its length. The dynamic blend-shapes are interpolated 

between the two values. The network of springs between the particles finally forms the muscle. 

 

4.4.5.1 Mass-Spring Systems Analysis 

In this section, we explicitly specify how a mass-spring system works as it plays a crucial role in 

the development of this software. We exemplify the mass-spring system utilising a two dimen-

sional network (see Figure 31) on a polygonal mesh such as a cloth patch. Consider our elastic 

model is a mesh of m x n particles. See Figure 31 to comprehend the spring connections that are 

created: 

 

Particle Link to Particle Spring Name 

[i, j] [i+1, j] and [i, j+1] Structural Springs 

[i, j] [i+1, j+1] 

[i+1, j] [i, j+1] 

Shear Springs 

[i, j] [i+2, j] and [i, j+2] Bend Springs 

Table 2: Spring connections according Figure 31 

 

The system is subject to following conditions: the fundamental law of dynamics: Fi,j = µai,j  

µ denotes the mass of each particle Pi,j and ai,j the acceleration caused by the force Fi,j. 

 Provot [Pro95] splits Fi,j in internal and external forces. He claims the internal forces to be 

the result of the forces of its neighbours Pi,j: 

 
59



 

Chapter  4 - Previous Work 

jiPk,lP

jiPk,lP

lkPjiPlkji
l

jiPk,lP(k,l)

lkji

lkji

lk
lkji

lkji
lkjilkjiji

K

l

l
l

lKPF

,  to linking spring  theof stiffness

,  to linking spring  theoflength  natural

,,  toequivalent
,,,

,  tospring aby  linked is  assuch couples all regroupingset  a

 :

 :

:

 :

)(

,,,

0
,,,

),(
,,,

,,,0
,,,,,,,int

ℜ

∑ ℜ∈ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

 

Equation 34: Internal force 

 

External forces can be omnipresent forces such as gravity (cf. Equation 35, (1)) or viscous 

damping (cf. Equation 35, (2)): 
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Equation 35: Omnipresent external forces 

 

The viscous damping defines the loss of mechanical energy of the model and could actually be 

considered as an internal force [Pro95].  

 A simple Euler method is applied to explicitly integrate the fundamental equation of dynam-

ics through time: 
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Equation 36: Integration 

 

In Equation 36, ∆t denotes the time-step2 and µ still defines the mass of each particle. 
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 The calculation of the mass-spring system is commonly depending on more than one ordi-

nary differential equation (ODE) such as Equation 34 or Equation 35. The combination of 

these equations may cause the system to diverge as independent variables are used [Lan99b]. 

Lander [Lan99a] claims that a system with high stiffness factors is also running the risk of get-

ting instable and havoc. “To combat this it’s important to use a good numerical integrator. The midpoint 

method and Runge-Kutta integrators […] seem to do the trick nicely.” [Lan99a] 

 The Euler method is the simplest and fastest technique to solve the integration through 

time. Due to having small time steps, it can produce reasonable results. However, Press [Pre02] 

recommends not to apply Euler’s method in practical use, as it shows a high error rate for large 

time steps and less stability. The midpoint or the Runge-Kutta method offer a promising ap-

proach to handle larger time steps. 

 The midpoint method also called the second-order Runge-Kutta (RK2) are defined as fol-

lows [Pre02]: 
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Equation 37: Midpoint method / RK2 

 

In the case of a mass-spring system, h denotes the time step ∆t and f(xn) is defined by the inte-

grator function described in Equation 36. O(h3) or O(h5) define the rounding error term. Better 

results are obtained by applying the fourth-order Runge-Kutta (RK4) method. This method 

evaluates the integrator function four times: 
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Equation 38: RK4 
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Other methods exist that serve to solve a mass-spring system. Kang et al. [KCCLP00] propose 

an efficient technique that stably updates the mass-spring system with the use of an “approxi-

mated implicit method” [KCCLP00]. Furthermore, the predictor-corrector approach [DSB99] 

seems promising. It serves to compute a rapid approximation of the integration. Afterwards this 

estimate is corrected in a post-step process momentum. However, RK4 is still the one most 

commonly used as it enables large time steps, guaranteeing the system to stay stable in most 

cases [Pre02].  

 

Mass-spring systems appear auspicious when applying a physically-based simulation. They com-

prise authenticity in terms of appearance and ensure physical validity. With increasing number of 

springs, finely woven muscle shapes require larger time steps to be evaluated. The interactive 

control of the muscles seems infeasible, considering the physical authenticity to be guaranteed. 

As a mass-spring system is time-dependent, interactive control has to take place in a special 

simulation environment where the system is computed over time. In Chapter 5.1.2.1, we will 

provide a method that bypasses the simulation environment and imitates a mass-spring system. 

 

4.4.6 Model Based on Finite Element Method 

Chen and Zeltzer [CZ92] utilise the finite element method (FEM) to simulate the geometry and 

underlying muscle material. The finite element method is “a method for solving an equation by ap-

proximating continuous quantities as a set of quantities at discrete points, often regularly spaced into a so-called 

grid or mesh. Because finite element methods can be adapted to problems of great complexity and unusual geome-

try, they are an extremely powerful tool in the solution of […] mechanical systems” [WolNDI]. The FEM 

and mass-spring model (cf. Chapter 4.4.5) are the most wide-spread approaches of physically-

based models simulating human anatomy [Zhu98]. However, the mass-spring system cannot be 

applied to compute exact physical behaviour [Zhu98].  

 Chen and Zeltzer [CZ92] conclude that simulating human anatomy can be done using geo-

metric, kinematical, and elastic models. Geometric models are used to synthesise a surface such 

as a polygonal mesh or rigid links such as bones. Kinematical models include skeleton driven 

surface deformations. In the elastic case, parts of the body are considered as consisting of non-

linear visco-elastic-plastic composite materials that react to applied forces. 

 The elastic component of the system is implemented with the finite element method. Such 

as most physically-based mass-spring models, Chen and Zeltzer [CZ92] use a model based on 

the Lagrange equation (cf. Equation 33) to describe the entire system. Their equation of motion 

is controlled by factors like mass, damping, and stiffness between nodes (elements) which make 

up the muscle body. Having defined the constraints of the system, every element is combined in 

one system of differential equations according to its initial conditions. The equations of every 
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finite element are integrated to one sum. This creates a vast system of equations that may con-

tain a great many of unknowns. Finally, this system can be solved via numerical operations.  

 As the system possibly includes many unknowns, the computation of the system is very 

time-consuming. Several efforts have been made to reduce the time to evaluate the system 

[Zhu98]. In fact, the performance of computers increases over the years. Hence, the FEM 

method will soon be applicable on a system that claims to be run in real-time. Furthermore, it 

has to be mentioned that interactive control of a muscle-based animation based on the finite 

element method is nowadays not practicable. 

 Several researchers adopted or improved the approach of Chen and Zeltzer [CZ92] such as 

Zhu [Zhu98] or Teran et al. [TBHF03] that used the finite volume method (FVM) that resem-

bles the FEM in many ways. 

 

4.4.7 Divers Muscle Models 

4.4.7.1 Aubel 

Aubel [Aub02] presents a model based on a triangle mesh representing the muscle. His model 

does neither require the mesh structure to be specifically organised nor a certain regularity of 

discretisation. Furthermore, a resampled or decimated mesh is not mandatory.  

 Aubel abstracts the muscle by two layers: action lines defining a skeleton and a surface mesh 

[Aub02]. The deformation of the muscle is exclusively controlled by lines of action as Nedel and 

Thalmann [NT98] previously propose. Fusiform muscles (cf. Chapter 2.3) are governed by one 

flat muscle approximated by several action lines. In the following, we adopt Aubel’s notations, 

denoting a vertex of an action line as “node” and referring to a vertex of the surface mesh as 

“vertex”. 

 Aubel defines the action line as a polyline based on a set of nodes [Aub02]. The nodes serve 

as basis for a 1D mass-spring system whose end nodes define the rigid attachment points: the 

origin and insertion. He denotes this nodes as “attachment nodes”. The remaining nodes are dy-

namic always enclosed by attachment nodes. Every node of the mass-spring system has an equal 

mass assigned to. The spring stiffness is derived from the type of material it represents: either 

tendon or muscle belly. Aubel defines force fields by ellipsoids that control the mass-spring 

system by repelling or attracting nodes. These force fields prevent from gross penetration or 

from losing a certain shape.  

 To deform the muscle, the action line is generated by assigning “local frames” to every node. 

These frames have three coordinate axes. The z-axis is defined by the normal of the plane that is 

determined by consecutive nodes and the tangents of the end nodes. As Aubel [Aub02] omits 

the information how the x-axis is determined, we assume he uses the tangent at each node. The 

y-axis is identified by applying the cross product to the x- and z-axis (cf. Chapter 4.2.1.1). Aubel 
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[Aub02] makes several adaptations to the local frames. One adaptation serves to prevent local 

frames from flipping in extreme positions.  

 Since every node has a local frame assigned to, it can be considered as being a joint. The in-

between segments are assumed to be bones such as Thalmann [TLT88] and Sun [SHSI99] pre-

viously proposed.  

 

 

Figure 33: Mapping a vertex to  
an action line segment[SHSI99] 
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Equation 39: Reference point 

 

To map a vertex to an action line segment, Aubel [Aub02] projects the vertex onto the planes 

spanned by the x- and y-axis of the nodes. The two closest planes define the reference of the 

vertex. Aubel computes a reference point on the action line segment as shown in Equation 39. 

O1 and O2 refer the nodes of the planes that represent the closest reference. d1 and d2 are the 

distances between the vertex and its projected points. Afterwards, Aubel assigns vertices to the 

action lines. He defines zones of influence for every action line and assigns every vertex to each 

action line depending on this influence areas and the distance to the action lines. Aubel guaran-

tees curvaceous action lines to be assigned properly by making several adaptations.  

 Finally, Aubel stores the parameterised reference points (cf. Equation 39 and Figure 33) for 

each surface vertex. Depending on its influence area, the vertex is translated driven by the de-

forming action lines.  

 Aubel [Aub02] claims his muscle to preserve its volume while contracting. Therefore, he 

considers a muscle adopting the shape of a generalised cylinder running along an action line. 

Wilhelms and Gelder [WG97] previously suggested “to scale the width and height of each cross-section by 

a ratio related to the change in length of the axis of the cylinder” [Aub02] [WG97]. Aubel defines the vol-

ume by multiplying the cross-section area at each node with the curve arc length from the node 

to its consecutive node [Aub02]. Changing the elongation affects the dimension of the cross-

section areas. Depending on the contraction of the action lines and their influence on a certain 

vertex, they are either pushed away from or attracted towards the curve. Due to the fact that this 

computation method is just an approximation, Aubel states that the volume preservation varies 
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from 1-2 % to 9 % when the muscle shortens by 30 %, which corresponds to the maximal 

physiological compression rate [Ric81].  

 Aubel [Aub02] additionally provides a tool to create the action line semi-automatically. The 

user only has to determine the origin and insertion the number of bellies and tendons. The tool 

creates the action line with an adequate count of nodes. The nodes are distributed equally along 

the action line with a certain spacing. The tool automatically determines the parameters for the 

mass-spring system. Given a straight action line, the user has to define force fields to form the 

shape of the action line. The force fields provide further control to influence its trajectories. 

Utilising ellipsoids, two kinds of forces can be modelled. In “radial mode” the action line is at-

tracted towards or repulsed from the centre of the closest ellipsoid. In “orthogonal mode”, the ac-

tion line is attracted to its orthogonal projection on the closest ellipsoid so that it slides freely on 

the surface of the ellipsoid. 

 Utilising the force fields, Aubel [Aub02] is able to avoid complex collision detection. Colli-

sion with bones can easily be simulated using force fields. Muscle-to-muscle collision can be 

simulated by attaching force fields to action lines. Aubel emphasises that the use of force fields 

does not completely cover precise calculation of collision and that penetration cannot be entirely 

avoided. 

 Aubel distinguishes between isotonic and isometric contraction (cf. Chapter 2.3.7), where 

isotonic contraction is exclusively defined by the elongation of the action line. Isometric con-

traction means that the muscle is in a tense state not controlled by the length of the action line. 

Aubel allows the user to determine the deformation. In rest position, Aubel provides access to 

enable the user to remodel the shape by modifying the width and height at every action line 

node. The new shape is controlled by the so called “activation curve”. 

 To make the muscle motion appearing more believable, Aubel enables to simulate “inertia 

induced oscillation” [Aub02] of the muscle. Additionally to this effect, he involves viscosity effects 

in his model. All effects are simulated based on a 3D mass-spring system. 

 At last, Aubel shows how the mass-spring system is evaluated. “The mass-spring system that 

governs the evolution of an action line deforms itself according to the Lagrange equation of motion” [Aub02] (cf. 

Equation 33) “The position of the i-th (dynamic) node of the action line is given by the following second-order 

differential equation:” [Aub02] 
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The mass value of the nodes can be omitted as they are equal throughout the system. The first 

term defines the node’s acceleration, the second stands for the velocity where γ is the viscosity 

damping factor. The third and fourth term determine the force of the previous and next node, 

the fifth term includes the influence of the force fields. The elastic forces contain factors such as 

damping and stiffness. 

 Recall Chapter 4.4.5.1, where the analysis of mass-spring systems is exemplified in detail. 

Aubel compares the integrators introduced in Chapter 4.4.5.1 such as the midpoint method or 

RK4. He even tests the Runge-Kutta method fifth order (RK5). He finally decides to use the 

adaptive Runge-Kutta method whereas adaptive refers to the adaptation of the time steps for 

every action line causing the system stay stable. Statistics show that using RK4 is a better choice 

as it is much faster and shows almost the same results as RK5 concerning stability. 

 Aubel attempts to make the system usable in real-time. First he removes the elasticity of the 

action line. Therefore, he calls the resulting action line an “admissible path along with muscle compo-

nents spread”. Next, he excludes some nodes from collision detection such as the insertion and 

origin. These two adaptations speed up the entire system so that Aubel claims that it can be run 

in real-time. 

 Our approach we discuss to a later date has several parts of Aubel’s model adopted. We 

completely implement some of his techniques, others are adapted or improved. In fact, Aubel’s 

model seems to be one of the best approaches that involves authenticity of appearance of mus-

cles and applicability in real-time. However, Aubel’s approach does not specialise in facial ani-

mation. Facial animation has some other restrictions that make his model insufficient in many 

aspects. A good example for another limitation is that in his approach the bones drive the mus-

cles. In reality, it is the other way around. In facial animation, only the muscles control the de-

formation of the skin. In fact, they are attached to the skull but the skull stays rigid apart from 

the mandible.  

 

4.4.7.2 Kähler 

Kähler wrote his dissertation about “A Head Model with Anatomical Structure for Facial Modeling and 

Animation” [Kae03]. His model involves a muscle-based skin deformer. He provides two types 

of muscle representation. The first method uses sets of ellipsoids to embody the facial muscle 

structure. The second one restricts to box-like shapes to form muscles. 

 Kähler’s muscle model [Kae03] distinguishes two kinds of facial muscles. A linear muscle 

that contracts along its elongation, and a sphincter muscle which contracts towards its centre. 

He combines several linear muscles into parallel groups to model sheets of arbitrary width. The 

linear muscle model works on the basis of a polyline (cf. action line in Chapter 2.3.7, 4.4.3, 4.4.5, 
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4.4.7.1) which has one point at the end staying rigidly attached to the skull. The sphincter mus-

cle has an additional point that defines the centre which the muscle is contracting towards.  

 Similar to the action line model Aubel [Aub02] or Wilhelm and Gelder [WG97] use, Kähler 

[Kae03] defines a local coordinate frame (cf. Chapter 4.4.7.1) not for every control point of the 

line but for every segment. He uses overlapping ellipsoids to represent the muscle surface for 

every segment as “the attachment process […] requires ray intersection tests, normal computation, and inside 

/ outside tests to be performed on the geometry.” [Kae03] Ellipsoids are overlapped to avoid large holes 

in the approximated muscle surface. As the transitions between the ellipsoids show gaps, for 

every segment, Kähler uses a box-like shape whose corners are connected to adjacent shapes. 

 

Figure 34: ellipsoid / box-like representation [Kae03] 

springs between different muscles

springs between nodes

Figure 35: Spring structure [Kae03] 

 

Kähler’s model [Kae03] enables the definition of connection constraints between muscles. Since 

parallel muscles can be combined to a union, the corresponding control points of every single 

fibre are averaged to one. In addition to compound muscles, the free ends of linear muscles can 

be connected to other muscle segments. Kähler’s model provides automatic detection of feasi-

ble muscle connections by testing on intersection of muscle shapes at the moment of initialisa-

tion. By determining connection constraints, the mass spring system is established. All adjacent 

nodes are linked by springs (see red lines in Figure 35). Next, muscles are connected to other 

muscles by springs (see green lines in Figure 35). 

 The contraction of a muscle is independent of the mass-spring system. Consider we have a 

linear contracted muscle. The polyline is contracted along its original shape in rest position. 

Every point of the line is pulled towards its end point attached to the skull or jaw. Given a 

sphincter muscle, every point of its closed polyline is displaced towards its ring centre when 

contracting. 

 Combined parallel muscles can now be deformed by moving the average control point that 

governs every muscle of its union. The corresponding control points are connected by springs 
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to each control point of the parallel muscle. If the muscle union is attached to another muscle, 

the average control point is connected to the other muscle by a spring.  

 When the control point of the polyline moves, its length changes. When the muscle is 

stretched, the polyline spreads along a flat line. Confer Figure 36 to see how nodes are translated 

that are not members of a constraint group:  

 

qu +1

t u +1
qv

qu
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Figure 36: Straightening of a muscle, black nodes are constrained [Kae03] 

 

According to the elongation of the muscle fibre, the nodes of the polyline are mapped along the 

line segments between the constrained nodes. In Figure 36, the crosses mark the new positions 

of the nodes while the line is not fully stretched. The nodes lie between the node in rest position 

and the point of the projected node on the segment (see Figure 36, dashed line). Based on the 

proportion of the current length with the rest length of the polyline, each node moves towards 

or away from its corresponding straight line segment. 

 Kähler [Kae03] differentiates two kinds of bulging and thinning of the muscles. Sphincter 

muscles thicken or thin evenly along their ellipse when contracting. In general, muscles are 

bulged due to the proportion of the current muscle’s elongation to its elongation in rest posi-

tion. Kähler [Kae03] induces linear muscles not to bulge evenly along their elongation. Accord-

ing to a simple quadratic function, the bulge factor increases towards the centre of the muscle. 

Approaching the end points of the muscle, the bulge factor decreases.  

 At last, Kähler [Kae03] provides several techniques to ease the creation of the muscle sys-

tem. He provides a tool that allows the user to sketch the muscle shape above the skin. Kähler’s 

tool projects this sparse shape and creates a proper muscle under the skin. His system aims for 

the quick setup of the muscle system. 

 Several features of Kähler’s model [Kae03] are implemented in our tool (described in Chap-

ter 5). In fact, Kähler’s model has some lacks concerning authenticity and preciseness of the 

muscle simulation. The results show that it can well be improved. Kähler’s main focus appears 

to be on an application that can be used in real-time implying a system that enables a fast con-

struction. Our model claims to be interactively controllable but not necessarily able to run in 

real-time. Therefore, some parts of Kähler’s model have been adopted, improved, or mixed with 

other models. 
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4.5 Muscle-Driven Skin Deformer Models 

In Chapter 4.4.2, we describe a model that specialises in direct skin manipulation. As in this 

model the muscle geometry and the skin shape are not separated, it will not be commented on 

any further in this section. The most muscle-driven skin deformer models resemble in some 

ways, so we will not commit ourselves to every approach in detail. Besides to that, it has to be 

mentioned that this thesis has its major focus on the realistic animation of muscles and that skin 

deformation represents a secondary task. Some of the approaches are additionally specified in 

Chapter 5.3, as they are implemented in our software. 

 

4.5.1 Anchoring Skin Vertices by Damped Springs 

We have to emphasise that the skin deformer approach described in this section is based on the 

model by Wilhelms [Wil94] discussed in Chapter 4.4.4. 

 Wilhelms [Wil94] makes a distinction between generation, anchoring, modification, and 

adjustment of the skin while animated. Since we are dealing with skin deformer models we do 

not have to address the issue of skin generation.  

 Wilhelms [Wil94] iterates through the entire skin, determines the closest ellipsoid (cf. Chap-

ter 4.4.4), and marks it as anchor ellipsoid. Based on the Newton-Raphson method, she com-

putes the nearest point from skin on the ellipsoid in respect of the ellipsoid’s dimensions. Hav-

ing calculated this nearest point on the ellipsoid surface, she stores it parameterised by the di-

mensions of the ellipsoid. Additionally to the closest point, she retains the distance between the 

skin point and the closest point on the ellipsoid. 

 After the ellipsoid has changed its shape, the parameterised nearest point (anchor point) can 

be remapped by scaling the dimensions of the ellipsoid. As a consequence, the skin point and 

the anchor point move with the varying ellipsoid. Wilhelms [Wil94] additionally defines a virtual 

anchor that is represented by the skin point parameterised by the ellipsoid while being in rest 

state (see Figure 37): 

 

Skin Point

Virtual Anchor Point

Anchor Point

RESTING STATE EXTENDED STATE  

Figure 37: Attachment of skin points [Wil94] 
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Wilhelms [Wil94] allows the user to make several modifications to the skin deformer. The user 

is able to define the “spring constant”  (k) that controls the stiffness of the connection between 

one point and its driving point. Furthermore, the rest length can be manipulated forcing a skin 

point to be farther from or closer to the ellipsoid.  

 During motion, the skin adjustment is computed by mapping the skin points from world to 

local space of the ellipsoid. Given the ellipsoid’s shape modified or translated, the new skin 

points are remapped into world space via the inverse of the matrix that defines the transforma-

tion from world to local space. Since the skin point is connected to the anchor point, to the 

virtual anchor point, and to neighbouring skin points (see Figure 37), all these connections in-

fluence the skin point during variation of the underlying ellipsoid. 

 “The algorithm for skin adjustment is not using physical simulation, and no integration is used. However, 

the effect is much the same. Deviations from the rest length of edges connected to each skin point are used for the 

adjustment.” [Wil94] Thus, Wilhelms does not require a time-dependent simulation environment 

as she evaluates the system iteratively. Such as a common mass-spring system (cf. Chapter 4.4.5), 

varying magnitudes are attempted to be balanced. Wilhelms applies the mass-spring system de-

pending on the number of iterations the user defines. In the same manner as the mass-spring 

system, each point has a force applied to. She does not describe the influence on a skin point 

based on forces, but the skin point affected by the sum of changes of its connections. She de-

notes the connections as edges. Assume for now lr is the rest length of a particular edge, lc the 

current length of this edge, and P the vector from the skin point to its connected point. The 

“spring constant” is denoted by k that is by default set to 1. The change of this edge’s position is 

computed as depicted in Equation 41:  
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Equation 41: Change in position  
due to one edge 

∑+=+ itt DpPP 1  

Equation 42: Change of a skin point 

 

The next iteration step, the new position of the corresponding point is computed (in a time-

dependent simulation this would be the next time-step). Pt+1 receives its new position due to its 

connected edges that are specifically displaced (cf. Dp in Equation 42). 

 Wilhelms [Wil94] points out that they have implemented collision detection but that it slows 

down the system remarkably although having ellipsoids as a basis for detection. She emphasises 

that reacting on collision changes the visual appearance slightly and can therefore be omitted. 
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Wilhelms approach of skin deformation seems to achieve convincing results. In fact, her pro-

posal of using ellipsoids is not the best choice as already noticed in Chapter 4.4.4. Thus, her 

model, whereby she parameterises all required data depending on ellipsoids’ properties, is not 

sufficient for an approach that claims to be more precise. 

 

Wilhelms refines her approach in collaboration with Gelder [WG97]. Recall Chapter 4.4.3, 

where the model of Wilhelms and Gelder is described. They specify the muscle surface based on 

a deformed cylinder. Instead of being parameterised by the dimensions of the ellipsoid, the pa-

rameters are controlled by the dimensions of the deformed cylinder. Wilhelms and Gelder 

[WG97] create the parametric dependency by relating the anchor and the virtual anchor (ut sup.) 

to the two closest slices of the deformed cylinder (see lighter skin vertex between slice 4 and 5 in 

Figure 25). A “warped cell” [WG97] is spanned between the two slices (see parametric trilinear cell 

in Figure 25) which defines the space for the anchors (similar to free-form deformers described 

in Chapter 4.2.2.2). By drawing a connection from the anchor position in world space to the 

space of the warped cell, the anchors are provided with the essential parameters. Wilhelms and 

Gelder [WG97] call this kind of parametric dependency “parametric trilinear transformation”. “Trilin-

ear” denotes the three dimensions of the warped cell. Having the parametric position defined by 

(s, t, u) [WG97], the new world space position can be computed as soon as the muscle shape 

alters. Storing the parametric positions and changing the shape of the warped cell, it is allowed 

to remap the anchors into world space. 

 In addition to adapting the ellipsoid model to the deformed cylinder model, Wilhelms and 

Gelder [WG97] provide a method to automatically determine the spring stiffness k (ut sup.) of 

each edge (ut sup.). Finally, the technique to evaluate the new position of a skin point is similar 

to the approach introduced in Chapter 4.4.4 and is therefore not further discussed.  

 Besides to that, it has to be alluded to that Turner and Thalmann [TT93], Lee et al. 

[LTW95], and Ng-Thow-Hing [Hin01] apply an approach to deform the skin which is quite 

similar to Wilhelm’s approach [Wil94].  

 

4.5.2 Linear Elasticity Model 

Aubel [Aub02] is one of the first to provide a method to resample a polygonal skin mesh. Given 

a rough sketch of the body skin, a rays are shot away from the entire skeleton in a “star-shaped 

manner” [Aub02]. The intersections of the rays serve as new points for a resampled shape. Diffi-

culties may occur when a ray intersects with the skin of body parts that are not intended to be 

hit. To guarantee an appropriate assignment for each ray, the skin shape is divided into body 

parts. Smoothing the resampled mesh leads to a proper appearance of the skin. This method can 
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be applied to models generated by a 3D scanner or obtained by the National Library of Medi-

cine [VHP86I], for example. 

 Aubel [Aub02] makes use of the Lamé equation that adequately synthesises the hypodermis 

(cf. Chapter 2.2.3) consisting of homogeneous, anisotropic, linearly elastic material (cf. Chapter 

2.2.3, derived from Debunne [DDBC99]): 
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Equation 43: Lamé equation 
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Equation 44:Velocities of propagated 
longitudinal and transversal wave 

 

To define the numerical integration (cf. Chapter 4.4.5.1) of the system, Aubel discretises 

Equation 43 in time and space [Aub02]. Equation 44 provides the time step for integrating on 

Equation 43. Consequentially, it is avoided that waves miss “discretisation nodes” [Aub02] while 

propagated through the linear elastic material. Missing discretisation nodes may cause the simu-

lation to diverge. Compare Chapter 4.4.5.1 where methods are described preventing a mechani-

cal system such as the mass-spring system from losing stability. These techniques can certainly 

be applied on this system. Just as his muscle model (cf. Chapter 4.4.7), Aubel decides to apply 

an “adaptive high-order explicit scheme” [Aub02] described in Chapter 4.4.7 (adaptive Runge-Kutta 4) 

and in Chapter 4.4.5.1. Furthermore, Aubel also considers artificial visco-elasticity that provides 

better stability to the system. 

In order to anchor the skin to the muscle or to the skeleton layer, Aubel uses a triangular 

mesh and differentiates between inner (muscles, skeleton 

layer) and external border (skin). The hypodermis is lo-

cated between both borders having its expansion con-

trolled by the user. 

Next, Aubel discretises the hypodermis by defining 

particles lying inside the hypodermis (see Figure 38, left). 

These particles, located next to the inner border, are di-
Figure 38: Anchoring skin to  
hypodermis particles [Aub02] 
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rectly anchored to the triangular mesh of the muscle or skeleton layer by projecting the particle. 

This way, the closest point to the particle is computed. The anchor is parameterised by defining 

the barycentric coordinates (cf. Chapter 4.2.2.3) on the triangle which the closest point is located 

on. Skin vertices are also connected to adjacent particles. Aubel anchors the skin vertex not only 

to one but to several particles that are positioned nearby. He calculates the position X of the 

skin vertex anchored to a particle Pi as follows: 

 

iii OMPX +=
 

Equation 45: Position of  
skin vertex 
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Equation 46: Position of skin vertex connected to several particles 

 

As depicted in Figure 38, Mi denotes a 3 x 3 matrix composed of the normalised vectors from Pi 

to three adjacent particles (“triplet”) lying in a range with a certain radius [DDBC99]. Every pos-

sible triplet is tested on singularity and the one most secure is chosen. Finally, the position of a 

skin vertex is computed utilising the weighted average of the local coordinates of k connected 

particles. Oi denotes the offset vector of a connected particle in respect of the skin vertex 

[DDBC99] (cf. Equation 46). 

 

Since this technique to synthesise fatty tissue is expensive in terms of computational effort, 

Aubel exclusively applies this method to body regions where fat abounds such as the breast, for 

example. For the sake of speed, he invents a technique to deform the skin properly that is faster 

as the one previously described. Since our tool uses an approach that resembles Aubel’s one, we 

will provide details thereof in Chapter 5. For now, we will only touch some aspects of Aubel’s 

procedure. 

 Aubel differentiates between rough vertex positioning on the surface of the limb or trunk, 

and the extrusion by the musculoskeletal system. For the rough vertex positioning, he uses the 

joints of the skeleton system. Compare Chapter 4.3.3.1, where we described how joints influ-

ence the skin. He uses a “smooth bind” method whose numerical analysis is further discussed in 

Chapter 5.2.2.1. Smooth binding the skin means that each skin vertex is positioned based on a 

weighted transformation induced by every joint of the system. Aubel reduces the influence on 

every skin vertex by assigning the maximum of two influencing joints and depending on 

weights. This technique is completely independent from the shape of the muscle or the bone.  

 The displacement induced by the musculo-skeletal system is computed by storing the initial 

distance of every skin vertex to its underlying structure. When the underlying layers deform, the 
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initial distances are tried to be retained. This means that the muscles or the bones freely slide 

under the skin despite displacing the skin. Aubel speeds up the process by using hierarchical 

bounding boxes to isolate the required ray-casting that defines the displacement. 

 However, Aubel neither provides exact information about how fast his skin deformation 

system works nor to which degree it is interactively controllable. Hence in Chapter 5.3.2.2, we 

will explain why the displacement induced by the musculo-skeletal system requires an immoder-

ate computational effort.  

 

Many researchers dedicate themselves to the analysis of skin deformation. Only some of them 

describe muscle-based skin deformers. Since most of these approaches are similar in their prin-

ciples, we picked two models described in this chapter. It has to be stated that intricate ap-

proaches such as the one Aubel [Aub02] claim to be physically precise. Results of simpler tech-

niques show that they suffice in terms of rapid computation and authenticity of appearance. 

Simpler approaches have the deformation and the displacement of the skin separated. However, 

it has to be emphasised that most times extrusion is not resulting by skin being compressed 

based on the characteristics of the hypodermis’ material. Skin is rather coarsely displaced exclu-

sively driven by the muscle motion and deformation. Furthermore, simpler models do not allow 

to compute wrinkles as they depend on skin characteristics and can therefore not be generated 

on the basis of the muscle. 
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5 Implementation 

“Nothing is more revealing than movement.”1

 

The advent of diverse theories paved the way for many computational implementations of mus-

cle-based systems. The growth of innovations focussing on facial animation lacks in comparison 

to remaining body parts. In this thesis we describe a wide variety of models that in totality form 

the foundation for creating credible, parameterised muscle-based facial animation.  

 In this section, we will derive a model for facial animation based on lifelike, anatomical char-

acteristics. We will differentiate between the skull, the muscles, and the skin of the face. Since 

modelling the skull does not require sophisticated representations, it will only be referred to. 

The muscle which is utilised for the animation will be divided into three models: the action line 

model (cf. Chapter 2.3.7), the muscle shape model, and the skin deformer model. Both models 

will separately be discussed in detail.  

 We comment on our system on a theoretical basis and we additionally provide insight into 

the software we developed in Alias Maya®. Maya® serves as platform to experiment with exist-

ing models and to develop new approaches. We expand on the progression that leads to the 

final realisation. Utilising Maya®, we elaborate on the architecture of our software and show 

exemplary source code to some extent.  

 

5.1 The Action Line 

In Chapter 2.3.7, it shaped up as the force of a muscle runs along a certain line of action. This 

action line goes through the centroids of the cross sections of the muscle [JD75]. It has two 

attachment points: the origin and the insertion. Most of the body’s muscles not belonging to the 

head are attached to bones. 

 In our approach, the action line is the component that drives the muscle shape. Conversely, 

the muscle shape does not affect the action line. Forces acting on a muscle, such as other at-

tached muscles or the collision with bones or other muscles, cannot be propagated back to the 

action line.  Therefore, all reactions to forces are handled by the action line itself.  

                                                                                                                     
1 Martha Graham 
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 Our final model provides two different kinds of deformation. One is driven by a contraction 

factor and the other by external components to which points of the action line are attached to. 

In the following chapter, we will describe several experiments we conducted to implement the 

action line. 

 

5.1.1 Experiments 

5.1.1.1 Geometric approach for Muscle Protraction 

Kähler [Kae03] concludes that stretching an elastic muscle straightens the points of an action 

line according to its elongation. It must be stated that the action line consists of a polyline with 

straight segments; in other words a NURBS curve of degree one (cf. Chapter 4.2.3).  

The muscle relaxation is performed in two steps. For the first step, we developed a model that 

stores the control points of the action line depending on its elongation. Stretching the action 

line preserves the original shape depending on its elongation (see Figure 39). The second step is 

the relaxation of the stretched action line along its elongation. 

 

Figure 39: Stretching the action line 

(1) Action line origin 

(2) Stretched action line insertion 

(3) Control point of action line 

(4) Control point  projected on line 

of elongation 

(5) Original action line 

(6) original action line insertion 

(7) Stretched action line 

 

During the first step, the proportions of the polyline are computed. This can be seen in Figure 

39, where the red line from origin (see Figure 39, 1) to insertion (see Figure 39, 2) defines the 

elongation of the stretched line. Using the original action line (see green line in Figure 39, 5), we 

project the control points onto the elongation line. We then store the projected control point 

(see Figure 39, 4) parameterised by the elongation line. The length of the red line between the 

control point and its projection on the elongation line (see Figure 39, line from 3 to 4) is stored 

as well. All parameters are stored based on the original action line. Stretching the action line 

affects the elongation. The line between the control point and its projection is now computed 

relative to the elongation utilising the theorem of intersecting lines: 
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// oCVs -> point array of original control vertices 

// cPU  -> index of origin 

// cPV  -> index of insertion 

// rL   -> relative location, displacement of insertion 

 

for(i=0;i<oCVs.length();++i) { 

 

 MVector a, b, bProOnA, c; 

 MVector aNew, bNew, bProOnANew; 

 MPoint bProOnAPoint; 

 double scaleOnA, stretchFactor; 

 

 a = oCVs[cPV] - oCVs[cPU];                // elongation vector 

 b = oCVs[i] - oCVs[cPU];                  // vector to be projected 

 bProOnA = (b * a.normal()) * a.normal();     // projected CV parameterised by a 

 bProOnAPoint = oCVs[cPU] + bProOnA;         // coordinates proj. vector on a  

 c = oCVs[i] - bProOnAPoint;                // orthogonal vector on a to oCV 

 scaleOnA = bProOnA.length();               // scale of projection vector on a 

 

 // new elongation with displacement added 

 aNew = oCVs[cPV] + rL - oCVs[cPU];            

  

 // stretch factor proportion original to new elongation 

 stretchFactor = aNew.length() / a.length();    

  

 // re-scale and stretch normalised a -> new projected CV parameterised by a 

 bProOnANew = aNew.normal() * scaleOnA * stretchFactor;  

  

 // adding on new orthogonal vector   

 oCVs[i] = oCVs[cPU] + bProOnANew + c * stretchFactor; 

  

 } 

Source Code 2: Stretching of action line 

 

After stretching the action line and leaving the original parameterised shape depending on the 

elongation, the action line is relaxed.  

 To relax the action line, it is interpolated between the stretched shape (ut sup.) and the 

original action line with every segment evenly spread along the straight elongation line (see dot-

ted line in Figure 40). The normalised elongation vector is computed (see er in Figure 40). Now, 

every segment is placed along this vector in the same succession. With the control points in the 

relaxed state, it is interpolated (see grey dashed line in Figure 40) between them and the control 

points of the shape in the stretched state depending on the stretch factor of the elongation. 
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e

relaxed state of original line

stretched state, same shape

interpolation line

 

Figure 40: Relaxation of action line 

 

The more the elongation of the action line converges to the elongation of the relaxed action line 

(see dotted line in Figure 40), the more the control points are displaced along the interpolation 

line (see grey dashed line in Figure 40). 

 

However, this model lacks accuracy and authenticity. Approaching the relaxed state along the 

interpolation line (see grey dashed line in Figure 40) results in segments not maintaining their 

original length. This is due to the fact that the stretch and relaxation is computed as being de-

pendent on the elongation line. The proportions referring to the elongation are correct, how-

ever, the dimensions of the single segments do not change proportionally.  

 A line of action of a real muscle does not behave like the action line computed in this ex-

periment. Displacing the insertion should change the last segment of the action line, followed by 

the attached segments until having reached the origin. In this case, moving the insertion de-

forms all segments in the same manner, all according to the elongation. The behaviour of an 

action line of a muscle is similar to a string (irrespective of the muscle elasticity) driven by mus-

cle forces. Imagine a string lying on the floor. If this string is not in a stretched position, moving 

one end does not necessarily deform the whole string at once. Rather the displacement propa-

gates through the string from insertion to origin. 

 The idea of propagating the displacement of the insertion along the action line to the origin 

is the basis of an inverse kinematic (IK) system. In the following sections, we will improve the 

computation of the action line based on an IK-system. 

 

5.1.1.2 IK-System-Based Muscle Protraction 

As mentioned above, the application of an IK-system could solve the problem of a consecutive 

cycle through the action line for every segment. We will discuss two approaches that deal with 

the solution of an IK-system. The first is called the Jacobian transpose method [Wel93]. We 

have implemented this method only to a certain degree, as it turned out to be more complex to 

assure the system to be evaluated correctly. Hence, we will not excessively discuss every aspect 

of this approach. The second approach is called the cyclic-coordinate descent method (CCD) 

which overcomes some of the limitations of the Jacobian transpose method [Web02].  
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The Jacobian Transpose Method 

An IK-system is typically applied when we assume the segments of the action line to be bones 

and the control points to be the joints. In this chapter, we will refer to the insertion control 

point as “end effector” [Par01]. We will show an example in 2D space which can easily be trans-

ferred into 3D space. 

 The Jacobian transpose method is an approach that consecutively computes the motion of 

each joint. It determines the change of every joint angle based on the variation of the end effec-

tor. To compute the changes, the partial derivatives in a matrix called the Jacobian matrix are 

required.  

 Consider a set of n equations depending on m variables: yi=fi(x1, x2, ..., xm), 0<i<n+1. To 

describe the change of the output variables relative to the input variables, the differentials of yi 

are defined using the chain rule. The matrix of these partial derivatives is called the Jacobian 

[Par01] (cf. Equation 47). 
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Equation 47: Jacobian matrix 
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Equation 48: Position and 
orientation changes of  

end effector 
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Equation 49: Joint  
angle changes 

 

For this IK-system, the input variables are defined by the changes of the joint angles (cf. 

Equation 49) and the output variables are the difference of the current to the goal’s orientation 

and position of the end effector (cf. Equation 48). The Jacobian matrix (cf. Equation 47) associ-

ates the input and output variables: 

 

θθ &)(JV =
 

Equation 50: Relation  
of joint angles  
to end effector 
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The alteration of the end effector’s orientation is defined by ϖ. It is determined by the changes 

of the given joint’s angle around the axis of revolution (see Zi in Figure 41): 

 

Zi

Ji

E-Ji
E

Zi (E-Ji)

 

Figure 41: Change in position [Par01] 

 

The cross product of the revolution axis and the vector pointing from the joint to the end effec-

tor represents the change of position (see. Figure 41). Figure 41 illustrates the linear change of 

position of the end effector at present, aroused by the change of the joints angle. With all re-

quired information gathered from one coordinate system, all joints angles can be determined. 

Figure 42 shows an example of a planar IK-system with three joints.  

 

θ1

θ3

θ2

P1

P2

E

G

(0,0)

 

Figure 42: Planar, three joints [Par01] 

 

As the IK-system in Figure 42 is planar, one axis of revolution is required to compute the 

change of the joint angles (cf. Equation 51, based on Equation 50): 
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Equation 51: Planar IK-system, three joints 

 
80



 

Chapter  5 - Implementation 

 In the case of a planar IK-system with three joints, the Jacobian forms a square matrix. 

Thus, the system of equations can easily be solved. Given a rectangular Jacobian matrix, the 

system can be solved using the “pseudo inverse” of the Jacobian matrix. If the Jacobian matrix J 

exists, the system is computed as follows: 

 

JT = ~J;                    // Jacobian matrix transposed   

Jsquare = J * JT;            // Jacobian matrix made square 

try{                       // Try-Catch statement to suppress singularity 

 JsquareInverse = !Jsquare;   // Inverting square matrix 

} 

catch (const std::exception& e) {  

 cout << "Error in actionLineDeformer: " << e.what() << endl;  

}  

JPseudoInverse = (~J) * JSquareInverse;  // Compute pseudo inverse of Jacobian 

Theta = JPseudoInverse * V;             // Compute Theta, joint angle changes 

Source Code 3: IK-system based on pseudo inverse of Jacobian matrix 

 

In 3D space, the joints rotate around two axes instead of one. The Jacobian Transpose Method 

therefore becomes more complex in that the system must be solved for two angles. This is 

caused by the degree of freedom (DOF) of the joints that increases in 3D space. 

 

We did not pursue the Jacobian transpose method any further due to its limitations. The first 

limitation is that we have to avoid controlling the IK-system in a time-dependent simulation 

environment. The system is interactively used. In this interactive system, large changes of joint 

angles or changes of the end effector may occur. “This means that if a too big step is taken in joint 

angle space, the end effector may not appear to travel in the direction of the goal.” [Par01] Utilising the 

pseudo inverse causes the system to compute one of many solutions. The system does not solely 

behave realistically concerning joint rotation [Par01]. It can be improved to better control the 

kinematic model. These adaptations would go beyond the scope of this thesis. We therefore 

concentrate on models that can be solved faster and that are more intuitive in application. The 

main reason not to use the Jacobian transpose method is the singularity problem that some 

configurations may cause [Wel93]. The cyclic coordinate descent (CCD) method described next 

is an effective alternative that is often applied in real-time animations.  

 

Cyclic Coordinate Descent method 

The cyclic coordinate descent (CCD) method is an iterative heuristic approach. This approach is 

often used in game applications as its computation is simple and efficient. The CCD method 
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attempts to minimise position and orientation errors by varying one joint variable at time. As it 

is a heuristic approach, it does not claim to produce mathematically correct results. 

 Each iteration starts with the rotation of the deepest child bone in the skeleton. Its orienta-

tion is changed so that it points towards the goal position of the end effector (see Figure 43, 

left). Next, the parent of this bone is rotated so that the line from this bone to the end effector 

points towards the goal of the end effector. In the next iteration step, the same is performed for 

its parent bone.  

 

 

Figure 43: CCD method [Web02] 

 

The algorithm processes every bone of the chain from the deepest to the top bone. Having 

cycled through the skeleton, the loop starts from the deepest bone (see Figure 43, right). By 

increasing the count of iterations, the final result can be further refined. The CCD method has 

the advantage that “even if the effector cannot be reached, the solver can make a solid attempt without becoming 

shaky or unstable” [Web02] 

 

// oCVs -> point array of original control vertices 

// cPU  -> index of origin 

// cPV  -> index of insertion 

// rL   -> relative location, displacement of insertion 

 

MPoint goal = oCVs[cPV]+rL;            // goal of end effector 

 

for(int iter=0; iter<iterDepth;iter++) { // iterations of CCD 

 for(int k=cPV;k>cPU-1;--k) {          // iteration through skeleton 

 

  MVector btt  = oCVs[cPV]-oCVs[k];     // base of bone to chain tip(end effector) 

  MVector btg = goal-oCVs[k];          // base of bone to goal of end effector 

  stat = btg.normalize(); 

  MVector btp = btg * btt.length();     // btt rotated on btg  
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  // store rotation of bone 

  MQuaternion angleAndAxis = btt.rotateTo( btp ); 

  for(j=k+1;j<cPV+1;j++) {            // propagate rotation through chain until  

   MVector btjp = oCVs[j]-oCVs[k];     // the end effector is reached 

 

   // rotated vector from base of actual bone to jth bone 

   MVector rbtjp = btjp.rotateBy( angleAndAxis ); 

   oCVs[j] = oCVs[k] + rbtjp; 

   } 

 

  } 

 } 

Source Code 4: CCD algorithm 

 

We chose the CCD method for solving an IK-system, as it does not have the problems around 

singular configurations as does the Jacobian transpose method. Furthermore, the method guar-

antees to converge [Wel93]. However, the CCD method has several restrictions that make it 

difficult to anticipate how many iteration steps promise the IK-system to converge. Due to the 

fact that we do not provide a time-dependent simulation environment to control the action line, 

the displacement of the end effector can vary remarkably. This means, the iteration steps can 

vary to achieve satisfactory results. Not only does the displacement of the end effector deter-

mine how many iteration steps are required to make the IK-system converge. The configuration 

of the whole chain rather influences the computation decisively.  

 Finally, we did not implement either of these methods for several reasons. At first glance, an 

IK-system applied on every segment of the action line might appear to be the right choice as it 

behaves correctly when displacing the end effector. However, it should be stated that the action 

line of a real muscle does not behave like a system of linked rigid segments. Moving the end 

effector changes the system from base to tip. It seems that through the whole chain and on 

every segment the same force is exerted. In fact, not every segment of the chain has the same 

applied force. Furthermore, every segment of the action line can vary its length. The action line 

attempts to balance the applied forces through every segment. Hence, if one segment is affected, 

this and the adjacent segments try to compensate the force. The entire chain is not automatically 

affected.  

 In the case of this IK-system, it is only possible to affect the tip of the chain. However, our 

system necessitates every segment being able to be influenced by external forces. A mass-spring 

system has less limitations and is therefore applied on the action line. 
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5.1.2 Final Realisation 

First of all, to implement the action line, its requirements are defined. Since the behaviour of the 

action line is derived from the muscle properties, this necessitates taking a closer look at how a 

muscle works and how the action line is influenced: 

 

Contraction: The task of a muscle is to contract. In case of the action line, this means that it 

contracts along itself towards the origin. In the case of a sphincter muscle, contraction is to-

wards its centre. 

Attachments: The muscle should be attached to the bone at the origin. The origin is the point 

of the action line that stays rigid. Since we are concerning facial muscles, the muscles do not 

have their insertion attached to the skull, except of muscles that govern the mandible. 

Elasticity: Several forces act on the muscle. The muscle, for instance, can passively be 

stretched. In this case the muscle shows an elastic behaviour. Following the motion of the or-

bicularis oris (see Figure 6), the muscle contraction causes an elastic stretch in those structures 

connected to it. Therefore, it is required to be able to attach muscles to other muscles. More-

over, different muscles show different elasticity effects based on varying density and stiffness.  

External Forces: The muscle can be affected by external forces induced by gravity, by motion 

of the entire head that causes the muscle to jiggle, and by collision with other muscles, bones, or 

skin. In addition to these forces, muscles can be influenced by forces external to skin. 

Muscle Groups: Waters and Frisbie state that actions of intertwined muscles can be coupled 

[WF95]. The zygomaticus and the levator labii superioris (see Figure 6), for example, show this 

behaviour [Kae03]. 

 

In our software, we do not adopt every feature specified above as some of them are not auto-

matically noticeable. In the following, it will turn out which features are compulsive and which 

ones can be omitted. 

 As alluded to above, we implement the action line based on a mass-spring system. The 

mass-spring system covers most of the principles governing how a muscle works like elasticity, 

external forces applied on the muscle, attachment to the bones, and the grouping of muscles. 

 

5.1.2.1 Physically-Based Model  

In this chapter, we expand on the model of the action line from a physical point of view. Com-

monly used physically-based models for muscles handle time-varying properties of the muscle 

parameters. Several researchers attempted to embed physical and dynamic properties into ge-

ometry. Our approach confines to model the action line and its physical behaviour. Our ap-
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proach is utilising Elias’ model [Eli03I] that presents a 1D-mass-spring system. To animate such 

a system, the explicit Euler integration scheme is commonly used as shown in Equation 36. 

 Elias [Eli03I] analyses this model and omits redundant parts. He describes the 1D-mass-

spring system as a string, a line of points connected by springs. The springs are initialised ac-

cepting one value for a certain magnitude in rest position. Moving a point causes the magnitude 

to change. If this magnitude stretches during animation, the connected points experience a force 

towards each other. The force is applied inversely when points cause the springs to fall below 

their original length. Elias [Eli03I] does not comprise the mass of every particle in his approach. 

In the case of our action line, every particle has the same mass so that it can also be omitted. 

Another reason to omit the mass of each particle is that, at present, it does not have to swing. 

Hence, the aspect of an external force causing the muscle to jiggle is not considered at the mo-

ment. 

 All this system does is attempting to maintain the magnitude of springs in rest position. 

Translated into a geometrical point of view, the adjacent points try to maintain their distance 

from each other. The extensions of the springs attempt to balance by counter forces. 
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Equation 52: Extension and  
magnitude of spring 

xi

xi-1

xi+1

s
next

s
prev

 

Figure 44: 1D-mass-spring system 

 

Given the current magnitude and the resulting extension of every spring, each particle can be 

recalculated: 
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Equation 53: Compute next position 
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Every spring has the same stiffness and can therefore be regarded as equal. Iterating through the 

entire action line for every point on the basis of Equation 53, the system can be evaluated. It has 

to be mentioned that boundary points are treated differently. The force applied on a boundary 

point results from one adjacent point with which it is connected. In case of a sphincter muscle 

(cf. Chapter 2.3), the last and the first particle of the action line are connected by a spring. 

 Time-dependent, the system can now react on external forces. We claim the system to be 

interactively run, not in a time-dependent simulation environment. We therefore developed a 

mechanism that computes the entire mass-spring system in an iterative way so that it continu-

ously is in a balanced state (compare the work of Wilhelms [Wil94]). It is then important to 

determine the interruption of the iteration. The system is situated in a balanced state when every 

spring has its original magnitude. Our system compares every present magnitude with the stored 

magnitude in rest position. When the original and the current spring magnitude diverge, the 

system is not balanced. 

 

// lengthSimilar       -> boolean 

// nCVs                -> point array of new control vertices 

// currentSpring       -> vector 

// originalSpring      -> vector 

// MASS_SPRING_EPSILON -> Maximum divergence factor 

lengthSimilar &= (abs(currentSpring[i].length() –  

               originalSpring[i].length())<MASS_SPRING_EPSILON);  

Source Code 5: Balancing mass-spring system 

 

When the current resemble the original spring magnitudes, the iteration is interrupted. Since this 

mass-spring system allows the springs to extend, the action line can be protracted so that the 

current spring magnitudes cause the maximum divergence factor (cf. Source Code 5) to be ex-

ceeded. However, the mass-spring system can be balanced. The mechanism described above 

does not interrupt the iteration. It has to be stated that the result improves by increasing the 

number of iterations. In fact, the system converges almost exponentially relative to the iteration 

steps. Our system allows the user to define the maximum itera-

tion steps (see Figure 45). Benchmark tests proved that a varia-

tion of iteration steps in a range of 100 using 10 particles does not 

influence the performance noticeably. The value for iteration steps denoted as “precision” is by 

default set to 500 as we determined that this value is sufficient. 

Figure 45: Iteration steps 

 

The system is implemented in a deformer node (cf. Chapter 3.1.3, Chapter 5.1.2.4). The de-

former enables the access on components controlling the action line. The action line is repre-
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sented by a polyline, in other words a NURBS curve of degree 1 (cf. Chapter 4.2.3). The attempt 

to apply the mass-spring system on a cubic NURBS curve (cf. Chapter 4.2.3) failed. However, as 

the control vertices are not necessarily placed along the curve, the mass-spring cannot be used 

to simulate physical behaviour. Maya® exclusively allows access on the control vertices, not the 

edit points (cf. Chapter 4.2.3). Edit points are located along the cubic NURBS curve so we at-

tempt to compute the control vertices by translating the edit points. The translation turned out 

to be impossible as Alias had a special computation method that they were not willing to release. 

Finally, we decided to use a workaround (cf. Chapter 5.1.2.3) that is based on a NURBS curve 

of degree 1 where edit points are equal to control vertices. In our workaround, we finally 

smooth the NURBS curve having the same effect as using a cubic NURBS curve from the initial 

point. 

 Given the access on control vertices, the computation is executed in two passes. In the first 

pass, the system is set up depending on whether being a sphincter or a parallel muscle. We in-

troduce a matrix of objects each containing the required data to describe a particle of a mass-

spring system. Each object contains data like the position the particle it is connected to and its 

spring magnitude to its connected particle. Next, a one-dimensional matrix containing these 

objects is initialised in the first pass. Thus, in the first pass the whole action line in its original 

rest position is captured and the mass-spring system is generated.  

In the second pass, the deformed action line is evaluated based on the mass-spring system. 

At present, external forces and attachment points 

are taken into account. Jiggle, collision, or forces 

acting through the skin do not no longer influence 

the calculation as they should scarcely be visible. 

In Chapter 6.1, we will expand on these influence 

forces. First, for parallel muscles, one attachment 

is made. The origin that is represented by the first 

point of the action line is attached to the skull. 

This means that one static force is acting on the 

first particle of the action line that makes the par-

ticle stay rigid relative to the skull. This way, every 

particle of the action line can be driven by an ex-

ternal force. For example, the insertion can be 

attached to another muscle or to the lower jaw. 

Having two attachments made at both ends, both objects, the insertion and origin are attached 

to, can be relocated (see Figure 46). Likewise, other objects can force other particles of the ac-

tion line. Assume for now, we have a sphincter muscle like the orbicularis oris (see Figure 6), 

Figure 46: Action line, insertion driven by locator
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connected to other muscles being responsible for expressing smile. How these connections are 

established is further commented on in Chapter 5.1.2.4. In the next section, we will provide a 

technique allowing the muscle to be contracted, the action line in particular. 

 

5.1.2.2 Contraction 

In this chapter, we describe how the contraction of the action line is computed. The contraction 

can be controlled by two means. One is the contraction factor that can be controlled by the 

user. The other way to control the contraction is based on the mass-spring system. Consider the 

insertion moves towards the origin. The muscle will be contracted along itself.  

 The system stores the original shape of the action line in rest position. After having the 

positions of the control vertices stored, the single segments (“spans”) are computed. Each seg-

ment length (cf. Equation 54) and each segment’s accumulated segment lengths (cf. Equation 

54) are defined:  
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Equation 54: Span parameterised 
 

Figure 47: Contraction along action line 

 

The accumulated length of the last span of the action line is equal to the length of the whole 

action line. With the information described above, multiplying by the contraction factor enables 

the new accumulated span lengths to be determined. Based on the new accumulated span 

lengths, the parameterised new position of every control vertex on the action line can be calcu-

lated.  

 Given the control vertex of the insertion, contracting the action line means that the inser-

tion will be translated so that it is finally placed somewhere along the curve on an arbitrary span. 

Comparing the new accumulated span length of the insertion with all original accumulated span 

lengths, provides the information on which span the insertion must now be placed. The new 

accumulated span length of the insertion is now subtracted from the smaller accumulated span 

length of its corresponding control vertex. The received rest length is divided by the corre-

sponding original span length. The length proportion obtained by this division serves to deter-
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mine the new vector length from the corresponding control vertex to its adjacent control vertex. 

By adding this vector on the vector of the corresponding control vertex, the new position of the 

insertion can be defined. 

 Iterating through every control vertex based on the contraction factor, the new action line is 

computed (see Figure 47). Our system is not limited to have the action line exclusively con-

tracted by specifying the contraction factor. Hence, if the insertion is driven by another compo-

nent and is moving towards the origin, the action line is contracted as described above. To make 

the system shortening the action line, the elongation from insertion to origin is determined. The 

original elongation in rest position is also computed. If the new elongation is falling below the 

original elongation, the action line is contracted as exemplified above. The contraction factor is 

therefore defined by the proportion of the new to the original elongation. 

 Our system allows the contraction to be executed in two directions. The action line can be 

contracted towards the origin, as it is assumed by default, or towards the insertion. Hence, the 

action line deformer has an additional attribute: the “contraction type”. The calculation of the con-

traction is adapted depending on the direction of iteration. Changing the contraction type causes 

the iteration to begin with the last control vertex. 

 Our system additionally allows the user to contract a sphincter muscle. As stated earlier, the 

sphincter muscle contracts towards its centre. The centre of contraction is defined by an addi-

tional object whose position and orientation in world space serve as input for the action line 

deformer.  

 

// oCVs                -> point array of original control vertices 

// nCVs                -> point array of new control vertices 

// contrFactor         -> contraction factor 

// centre              -> centre of contraction 

for(unsigned i=0;i<oCVs.length();++i) { 

 MVector v = oCVs[i] - centre;        // vector from cv to centre 

 nCVs[i] = centre + v * contrFactor;   // new cv 

 } 

Source Code 6: Contraction of sphincter muscle 

 

As shown in Source Code 6, the contraction is applied on every control vertex. 

 The calculation can be reversed. By changing the “contraction type”, the action line can be 

evenly displaced away from the centre. The experience proved that in the majority of cases, 

changing the contraction type of the circular action line does not make sense as the stretching is 

caused by other forces.  

 To distinguish between having a parallel or a sphincter muscle, our system examines the 

action line on being closed. In Maya® it is differentiated between three kinds of NURBS curves. 
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The NURBS curve can be open, closed, or periodic. If Maya® claims the NURBS curve to be 

open, having a parallel muscle is assumed. The application is interrupted when having a closed 

curve. A closed curve is a loop with coinciding start and end points [Ali04a] not necessarily con-

tinuous in this area. The third case, the periodic one, represents the correct kind of NURBS 

curve to define a circular action line.  

 The action line deformer is now capable of coping the basic tasks of an action line. At the 

moment, other features like collision detection and jiggling are not finally implemented. That is 

why they are not further elaborated on in this chapter. In the next section, we will discuss how 

to get a smooth cubic NURBS curve without having to deform its control vertices. Due to the 

fact that it is not possible to control edit points (cf. Chapter 4.2.3.2), we use a workaround that 

allows us indirect access on them.  

 

5.1.2.3 Smoothing the Curve 

In this chapter, we expand on making a NURBS curve of degree 1 smooth and round. The re-

sult will be a cubic NURBS curve that is attempting to approximate the NURBS curve embod-

ied by straight segments.  

 The Maya® node (cf. Chapter 3.1.2) that provides this feature is called “fitBspline”. “This node 

computes a NURBS curve that will fit through a list of given points. The list of points is defined as the control 

points of the input curve.” [Ali04a] 

 

 

Figure 48: Smoothing with fitBspline 

 

In Figure 48, it can be noticed that the blue cubic NURBS curve attempts to run through the 

control vertices that are lying on the NURBS curve of degree 1. This way, it is possible to con-

trol the control vertices of the NURBS curve of degree 1 that, as depicted in Figure 48, also lie 

on the cubic NURBS curve. Having a mass-spring system influencing the curve as previously 
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alluded to, the components specifying the curve are located along the curve, namely the edit 

points (cf. Chapter 4.2.3.2 and Chapter 5.1.2.1). Thus, using this model allows us to control a 

smooth cubic NURBS curve, by translating points placed along the curve. In Chapter 5.2, it will 

turn out why using a smooth action line makes sense. 

 

5.1.2.4 Architecture 

In order to understand the framework of the implementation of the action line, the basic soft-

ware architecture will be an issue. As might have become evident, we are using the term “action 

line deformer”. In Chapter 3.1.3, we already mentioned the MPxDeformerNode which is responsible 

for deforming an input geometry and consequentially generating an output geometry. In Chap-

ter 4.2.2.2, we specify how polygonal meshes are deformed.  

 Figure 49 depicts how the deformer works in terms of its object-oriented architecture. 

 

MPxNode
Attributes

MTypeId typeId
MString typeName

MPxDeformerNode
Methods

+MStatus deform( &block, &iter, &mat, multiIndex );

MItGeometry iter
Methods

+ MStatus  next ()
+ MPoint  position()
+ MStatus setPositio...
+ bool isDone()
+ MStatus reset()

Maya Core

myDeformer
Attributes

Methods
+ MStatus initialize()

MObject additionalComponent
MObject deformKind

+ MStatus deform( &block, &iter, &mat, multiIndex );
+ MStatus generateSomething()

MStatus myDeformer::deform(MDataBlock &block,
                                                MitGeometry &iter,
                                                const MMatrix &localToWorld,
                                                unsigned int geomIndex )
{
   for( iter.reset() ; !iter.isDone() ; iter.next() ) 
   {
      MPoint pt = iter.position();
      iter.setPosition(pt);
   }
}

 

Figure 49: Architecture of general deformer in UML 

 

The Maya® core heads the hierarchy. As described in Chapter 3.1.3, internally, a copy of the 

node that the user creates is used. This copy is part of the dependency graph. The user only 

accesses its proxy object MPxNode (see Figure 49). The important object to deform a geometry is 

the MPxDeformerNode. This object inherits from MPxNode including attributes that provide the 

node with a unique identification number and a name. Finally, we specify the myDeformer object 

that inherits the MPxDeformerNode and therefore the deform-method.  

 As shown in the bluish box in Figure 49, the deform-method is finally executed induced by 

the Maya® core. It obtains the following parameters necessary to deform the input object: the 
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data block (containing all necessary input and output data), an object to iterate over the input 

geometry, a transformation matrix to translate from local to world space, and the geometry in-

dex corresponding to the requested geometry when having multiple outputs.  

 Notice the green box at the bottom right in Figure 49. Given a NURBS curve as input, the 

handle on this geometry is provided by the iterator object (MItGeometry). This object enables to 

iterate over every control component of the geometry, in this case the control vertices of the 

action line. It allows us to read and to set the position of the control vertex and thus the ma-

nipulation of the entire action line. 

 To give the user control over the action line, additional attributes and input plugs are speci-

fied. By modifying attributes, the user is allowed to control additional 

parameters influencing the action line. As exemplified in Chapter 

5.1.2.1 to 5.1.2.2, the action line can be influenced by the attributes 

“precision”, “contraction factor”, and “contraction type”. 

 To allow the user to control every control vertex and thus every particle of the mass-spring 

system applied on the action line, we provide an array of plugs to provide the input of a set of 

transform matrices. The user for example, is able to connect the world matrix of a locator object 

to the first element of the array of input plugs. This means the first control vertex of the action 

line is driven by the position of the locator: 

 

 

Figure 51: Input and output plugs of action line deformer 

  

When applying a deformer, Maya® duplicates the original input object and uses a copy as input 

object. Finally, the object the deformer is applied on serves as output object (see Figure 51). The 

deformer is created using a MEL script that looks like the following: 

 

// create action line deformer 

$alDefName = `deformer –type actionLineDeformer –name "actionLineDeformer"`; 

 

// attach action line shape as input geometry 

Figure 50: Attributes  
action line 
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deformer -e –g actionLineShape $alDefName[0]; 

 

// connect world matrix of locator_1 to the origin of the action line 

connectAttr –f ("locator_1.worldMatrix") ($alDefName[0]+".locMatrix[0]"); 

Source Code 7: Set up action line deformer 

 

 Consider the action line has a number of n control vertices. The deformer generates an array of 

input plugs with the count of n. In addition to this array of plugs, the deformer provides an 

input plug to define the centre position of a sphincter muscle. This may also be the world matrix 

of a locator that is connected just like the drivers of the control vertices.  

  

It must be concluded that this kind of architecture allows us the freedom to expand the system. 

Additional attributes and plugs can later be appended. We decided to write our own node for 

the action line because of the modularity it provides. The action line can be multiplied adopting 

different properties. The action line can be seen as one module that is independent from any 

other component controlling the facial animation.  

 

5.2 Muscle 

To animate facial expressions, the muscle plays a crucial role. The action line, the foundation for 

the muscle’s animation, is already accomplished. In this section, we specify how the action line 

affects the deformation of the muscle. Moreover, we describe how the muscle attempts to pre-

serve its volume based on the action line varying its length. The user will be able to modify the 

bulge caused by the contracted muscle. Furthermore, it will finally be possible to adjust the 

shape of the muscle bulge. 

 In the following chapter, we will elaborate the experiments we conducted that lead to the 

final realisation of the action line driven muscle shape. 

 

5.2.1 Experiments 

The first approach we use that provides a model to create a muscle shape is derived from the 

work of Kähler [Kae03]. He utilises ellipsoids to simulate segments of muscle fibres (cf. Chapter 

4.4.7.2). As alluded to above, the ellipsoid model lacks accuracy concerning the continuity of the 

shape’s surface. This model could be used to synthesise facial animation being scarce in terms of 

appearance. Given the demand for a realistic simulation, this model does not suffice in terms of 

appearance. First, we extend Kähler’s model similar to the model described in Chapter 4.4.3. 
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5.2.1.1 Cylindrical Muscle Node 

This model aims at generating a deformed cylinder surrounding the action line. Imagine for 

now, stepping through the action line with a certain step size. Around each point, a discretised 

ellipse is drawn. Depending on the local coordinate system of the 

corresponding point of the action line, the ellipse receives its 

orientation. The local coordinate system is obtained by determin-

ing the tangents. We add an arbitrary vector to receive a vector 

orthogonal to the tangent. This is done by computing the cross 

product. With the orthogonal vector, we calculate a third vector 

that defines the last of the three coordinate axes. With the local 

coordinate system in place, we can fill a transformation matrix 

that is multiplied on the ellipse. This way, the ellipse obtains its 

orientation. Having every ellipse computed, the ellipses are connected to create the polygons 

that make up the final model of the deformed cylinder.  

 To model the cylinder as a polygonal mesh, the positions of the vertices are consecutively 

stored in an array. Next, the degree of every polygon is written into another array. The degree 

defines the number of vertices that specify this polygon. To generate the polygonal mesh, in the 

last array, the vertex indices of each polygon are stored depending on its corresponding degree. 

Unlike the action line we implemented, the muscle shape generator is an object that inherits 

from MPxNode. This node generates the geometry in its compute method (cf. Chapter 3.1.1 and 

3.1.3). In the following, a small excerpt of the geometry generation is provided: 

 

// subDivCap            -> sub divisions of every ellipse 

// newCSMatrix          -> matrix for new coordinate system, depend. on action line

 

int index2To1Dim = row*subDivCap;               // transl. from 2D to 1D array 

for(t=.0, i=0;i<subDivCap;t+=tStep, ++i) { 

 

 x = heightEllipse[row]*cos(t);                // simple ellipse drawn in 2D 

 y = widthEllipse[row]*sin(t);                 // every height and width 

 z = 0;                                    // can be specified 

 MPoint pMuscleNoOrient(x, y, z, 1.0);          // ellipse point in 2D 

 MPoint pMuscle = pMuscleNoOrient * newCSMatrix;  // orientation and position 

 

 // set up array of vertex positions 

 vertices.append(pMuscle.x, pMuscle.y, pMuscle.z, 1.0);  

 

 // set up array of vertex count for every polygon 

 faceDegrees.append(4);    

 

Figure 52: Cylinder setup
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 // connecting vertices for polygons / set up vertex index array for every polyg. 

 faceVertices.append(index2To1Dim-subDivCap+i); 

 faceVertices.append(index2To1Dim-subDivCap+i+1);  

 faceVertices.append(index2To1Dim+i+1); 

 faceVertices.append(index2To1Dim+i); 

 

 }  

Source Code 8: Setup cylindrical mesh 

 

As shown in Source Code 8, the dimensions of every ellipsoidal cross section can be modified. 

By varying the cross sections, not only the muscle shape can be modified, but the muscle bulge 

can be generated. The height and width is multiplied with a factor varying along the action line. 

Near the tendons, the cross sections should not experience a change. In the centre of the muscle 

belly, the bulge should appear with the largest extent. In case of this experiment, we decided to 

use a flipped square function to simulate the muscle bulge. The function produces a curve that 

should approximate a real muscle bulge. The discretised values of this curve are multiplied to 

the height and width of each ellipsoidal cross section along the muscle. Varying the parameters 

of the square function changes the appearance of the muscle bulge. Furthermore, the system 

allows us to control the bulge direction, i.e. the extent of the affected height may exceed the 

extent of the affected width of  the ellipses. 

 

At first sight, this model seems to fulfil all requirements to synthesise a real muscle. The possi-

bility to change the shape as described above should allow to approximate nearly every muscle 

shape.  

 However, the model lacks simplicity to handle and authenticity of appearance. To produce a 

realistic muscle as it should be the case in our simulation too many modifications have to be 

made. It is not convenient enough to generate a muscle shape by changing every cross section. 

If we are dealing with a flat muscle like the ones that can be found in the scalp area such as the 

frontalis (see Figure 6), this model cannot generate appropriate results.  

 In addition to that, the square function we used to simulate the muscle bulge does not ap-

proach a real muscle. It can be observed that the bulge increases its extent slowly from tendon 

to the centre of the muscle belly. Nearby the centre the muscle model should maintain its belly-

like shape. In the next section, we follow these requirements. We provide a model that accepts 

any kind of polygonal mesh for the muscle shape. 

 

 
95



 

Chapter  5 - Implementation 

5.2.2 Final Realisation 

In this chapter, we discuss the final implementation of the muscle deformer based on the action 

line. Having experimented with the model previously introduced, we adopt and adjust some of 

the features it provides. The deformation of the muscle shape, as it is described in the previous 

chapter, can be conveyed on the following model. Recall having each 2D ellipse to be re-

oriented and repositioned depending on the action line. Now, we transfer this model to a com-

pletely different three-dimensional shape that is independent of being based on a primitive like 

the cylinder.  

 

5.2.2.1 The Muscle Shape Driven by the Action Line 

Consider a Maya® deformer accepts the action line as additional input. After having the action 

line converted to a cubic NURBS curve, it can serve as additional input for the muscle de-

former. Thus, the deformer can be applied on an arbitrary polygonal mesh. To have the action 

line controlling the muscle shape, we regard the action line as a chain of joints. This skeleton 

drives the deformation of the muscle shape. Maya® allows us to access the NURBS curve and 

read the positions of the points belonging to it. Stepping along the action line, the obtained 

points serve as joints to cause the muscle shape to deform. In an analogous manner, the muscle 

geometry is smooth bound (cf. Chapter 4.3.3.1 or 4.4.7.1) to the points of the action line. We 

adopted an approach by Alias [Ali03b] that released a description of the “internal math for the 

smooth skinning interpolation”. In the following, we describe the algorithm derived from Alias 

[Ali03b] with some adjustments. 

 Given a set of vertices, shaping the muscle geometry, each is repositioned according to the 

influence points of the deforming action line. First, we compute the local coordinate system of 

each influence point on the action line (in the following referred to as “influence”):  

 

Figure 53: Local coordinate system  
of influence point 
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Equation 55: Local coordinate system 
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Basically, the local coordinate system obtains its orientation from the tangent of the action line 

at the point of the particular influence (see Figure 53, x-axis, red). We provide two ways of 

computing the other axes. The first one serves to produce the z-axis (see Figure 53, blue) by 

applying the cross product to an arbitrary vector. This vector may not be parallel to the x-axis. 

The second method serves to avail the vector by disassembling the bias matrix that is another 

input to the muscle deformer node. The function of the bias matrix is discussed further down. 

Disassembling the matrix means that its y-axis is extracted and that it is used to compute the 

orthogonal z-axis (see Figure 53, blue) of the influence point’s local coordinate system. Having 

identified the z-axis, the y-axis can be computed. The cross product of the x- and z-axis supplies 

us with the y-axis and thus rounds off the local coordinate system of the particular influence. 

See Equation 55 where the setup of the transformation matrix of the local coordinate system is 

illustrated. The initial transformation matrix of the influence point (Bi) serves as basis for further 

calculations of every vertex of the muscle shape. With this matrix and the current transforma-

tion matrix of the influence (Ti), the current position of every vertex can be computed: 
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Equation 56: Smooth bind algorithm 

 

As shown in Equation 56, Mi denotes the transformation matrix of every influence for a particu-

lar vertex. Every vertex is affected by all influences depending on weights. If an influence is the 

weight of 1 assigned to, it represents the only influence that affects the vertex. The weights of all 

influences on a vertex sum up to 1. As it might be noticeable in Equation 56, only the maximum 

of two influences are assigned to each vertex. Due to the fact that the action line can be seen as 

a nearly straight chain of joints surrounded by the muscle shape, every vertex of the muscle 

shape is located not exceeding the influence of two joints. Maya® provides a function that 

serves to ascertain the closest point on the action line to a vertex (see Figure 54, grey line). The 

closest point is obtained parameterised and depending on the action line. Given an action line 

with a number of n control vertices and m points lying on the action line and being influence 
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points, we can obtain weights of an influence on a muscle shape vertex by applying the follow-

ing equation: 
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Equation 57: Weights for two influences 

Figure 54: Weights by closest point 

 

See Figure 54 where two influence points affect a muscle shape vertex depicted as a cross. De-

pending on w1 and w2, Equation 56 is applied for every vertex of the shape. Given a muscle 

shape vertex whose closest point on the action line is one of the end points, this end point ex-

clusively influences this vertex with the weight of 1. If we are dealing with a sphincter muscle, 

the action line does not have end points so every point is throughout affected by two influence 

points. Figure 55 shows an example of the muscle deformer. Each of the three images displays 

the action line that has a fixed point on the right: the origin. 

 

 

Figure 55: Muscle deformer 

 

The pink locator on every illustration depicts the insertion that can be freely translated (see 

Figure 55, right) and that moves with the action line (see Figure 55, pink curve) when contracted 

(see Figure 55, centre). 

 At the moment, the muscle is functionally attached to the action line. It can be stretched, 

contracted, and inherits all other remaining properties of the action line. Another missing, im-

portant feature of the muscle is its volume maintenance and the muscle bulge the contraction 

causes. In the following chapter, we will detail the simulation of muscle bulge.  
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5.2.2.2 Muscle Bulge 

Now that the muscle shape adequately deforms according to the action line, the muscle bulge 

can be modelled and parameterised. Having the muscle shape and its approximated volume 

stored in rest position, our system attempts to preserve the volume. As previously mentioned, 

the volume preservation of a muscle is not biologically proved [WG97]. However, the muscle 

attempts to approximate a muscle preservation while contracted. To simulate muscle preserva-

tion, we assume the shape of the muscle to behave like a deformed cylinder (cf. Chapter 4.4.7.1). 

The cylinder volume is computed by multiplying the cross section with its height.  

 We divide the muscle shape in sections. Each section embodies an imaginary single cylinder. 

The length of its corresponding action line segment defines the height of this cylinder. The area 

of the cross section is approximated by using the formula to calculate the area of a circle:  

 

radius
muscle shape

action lineheight

 

Figure 56: Cylinder section approximation 

 

Figure 56 illustrates the approximated cylinder section. The volume of the cylinder is calculated 

as follows: 

 

height
Vradius

heightradiusV
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=

 

Equation 58: Cylinder volume / radius 

 

The muscle bulge can be computed by utilising the cylinder model. Our system computes the 

closest point on the action line to every muscle vertex. The distance from vertex to its closest 

point defines the radius of the approximated cylinder. Thus, the cross section of each cylinder 

section is considered to be composed of several radii.  

 Similar to the action line deformer, the muscle shape deformer is executed in several passes. 

In the first pass, all cylinder section heights are stored. The cylinder section height is defined by 
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the segment between adjacent influences on the action line. For every vertex, its corresponding 

segment correlation is stored. Now, the formula to calculate the radius can be applied. Varying 

the height of the cylinder changes the radius depending on the square root of the height’s recip-

rocal. Associating the original and current segment length (equivalent of cylinder height) creates 

the following equation that is similar to the formula provided by Wilhelms and Gelder [WG97]: 

 

current
seg

original
seg

l
l

torstretchFac =  

Equation 59: Factor, defining  
how far vertex is pushed  

away from action line 

 

This stretch factor describes how far the vertex is displaced away from the action line. However, 

it does not guarantee exact volume preservation as we are not concerning muscle sections being 

entirely equal to cylinders.  

 The muscle does not behave evenly along its elongation. Muscle fibres taper near the ten-

dons. Fibres of the muscle tend to shorten nearby their centre. Fibres in the side push outer 

lying fibres away (cf. Chapter 2.3.7). These properties are responsible for the muscle to bulge: 

the muscle extent increases approaching the centre and decreases running towards the tendons. 

The muscle thickens smoothly from tendon to tendon; the appearance resembles a smooth 

curve progression. In Chapter 5.2.1.1, we experiment with a square function to control the swell 

along the muscle. As we previously pointed out, the square function does not comply with the 

requirements of an authentic muscle bulge.  

 We use a Gauss-function instead and conclude that it best fits the curvature of a real muscle 

bulge: 

 

 

Figure 57: Gauss function 

2

)( xexf −=
 

Equation 60: Gauss  
function 

 

On order to give the user more control on the muscle bulge in addition to the volume preserva-

tion being approximately mathematically correct, the Gauss-function has several parameters: 
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Equation 61: Adapted Gauss function 

 

With additional parameters, the user is allowed to further determine the shape of the muscle 

bulge. It must be mentioned that from now on, mathematical accuracy of the volume preserva-

tion is not guaranteed.  

 Equation 61 shows the adapted Gauss-function. This Gauss-function is finally applied on all 

stretch factors of each section previously computed. The Gauss function is further adapted in a 

way so that near the tendons, the volume of the muscle does not change. The offset can be 

additionally determined so that an assigned value of 0 causes the bulge to appear in the centre of 

the muscle. We modified the bulge form factor so that it accepts all positive integer values.  

 

 

Figure 58: Muscle bulge with different parameters 

 

In Figure 58, a contracting muscle is illustrated. We refer to a parallel muscle as this kind of 

muscle commonly occurs in the facial region.  

 If we are concerned with a flat muscle appearing in the scalp area for example, computing 

the muscle bulge evenly all around muscle may not be realistic. We therefore incorporate a func-

tion to suppress the muscle to bulge in every direction. The system has an additional input, the 

bias matrix, that determines the orientation of the muscle bulge. The system allows us to use 

one of the axes provided by the bias matrix to represent an up-vector of the muscle bulge. The 

muscle bulge in direction of the two remaining axes is reduced, the more the axes are ap-

proached. Recall the computation of the local coordinate system of the influence point. We 

utilised the bias matrix and the tangent as starting point for the calculation (cf. Chapter 5.2.2.1). 

Each influence point has an orientation referring to the bias matrix. The system then enables the 
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definition of the muscle bulge’s up-vector. The additional attribute “bias type” allows the user to 

pick one of the three axes of the current transformation matrix (cf. Ti in Equation 56) of each 

influence (remind Chapter 5.2.2.1, Figure 53). Finally, the stretch factor is controlled by the 

angle that is defined by the current transformation matrix Ti of the selected axis to the vector 

pointing from the muscle vertex to its closest point on the action line. With decreasing angle the 

extent of the muscle bulge grows. If the angle approaches a degree of 180, the muscle bulge 

swells. Approaching the degree of 0 or 180 degree, it reaches its saturation point. A vector is 

temporarily computed to hold the chosen axis of the current transformation matrix. This vector 

is referred to as bias vector. It additionally depends on the two bias vectors which are defined by 

the influences. Based on the weights of each influence point on the according vertex (see Figure 

54 and Equation 57), the corresponding bias vector is averaged. 

 

// alToP            -> vertex to closest point on action line 

// t2DivPI          -> 2 divided by PI 

// sf             -> previously computed stretch factor 

// biasVector depending on the bias vector of each influence and its weights 

MVector biasVector = weight1*biasVectorInf1 + weight2*biasVectorInf2;  

 

// previously added a value of 1, so it’s always above 1. now subtracting to 

// have the Gauss function symmetrical around the origin of (0,0) 

sf = sf - 1; 

 

// the closer the angle of alToP to the bias vector to 0 or 180(here in radian 

// measure), the bigger the extent of the muscle bulge(stretch factor) 

sf *= (float)(1 - abs(alToP.angle(biasVector)*t2DivPI-1)); 

 

// add 1 to have the Gauss-function always exceeding 1 

sf += 1;       

Source Code 9: Computing muscle bulge with orientation 

 

If no bias matrix is specified, the muscle bulge is assumed to have the same extent evenly 

around the action line. 

  

 

Figure 59 : Cross section of muscle, different bias types 
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In the previous illustration, a cross section of the muscle is depicted: the first one is not con-

tracted; the others are contracted based on different bias types. 

 Given a sphincter muscle, it does not maintain its volume appearing with a bulge. The vol-

ume preservation is rather evenly spread along the action line. Thus, it is not possible to further 

specify the shape of the bulge caused by the volume preservation. 

 In addition to the bulge caused by the contraction, the system enables the user to control 

the isometric tension (cf. Chapter 2.3.7). The user is enabled to generate a muscle bulge sepa-

rated from the action line’s contraction factor. In Chapter 2.3.7, the isometric tension is ex-

plained. It denotes the tension while the muscle is in rest position. This attribute can be used to 

predefine a certain default muscle bulge before the muscle is contracted. 

 In the next section we discuss the architecture of the muscle deformer. We will exclude 

some of the background previously introduced.  

 

5.2.2.3 Architecture 

In this chapter, we elaborate on the architecture of the muscle shape deformer. Basic knowledge 

about Maya® deformers in general is prerequisite. In Chapter 5.1.2.4, the basic structure of a 

deformer is already described. In case of the muscle shape deformer, several adjustments are 

made. 

 This time, we are concerned with a polygonal mesh. The polygonal mesh consists of a set of 

polygons, defined by vertices. If a deformer is applied on the polygonal mesh of the muscle 

shape, the creator of the deformer is provided with a han-

dle on the mesh vertices. Recall Chapter 5.1.2.4, where the 

deformer of the action line provides an iterator on the 

control vertices of the action line. This time, the deformer 

provides an iterator object to step through the list of verti-

ces defining a polygonal mesh. Thus, it is possible to ma-

nipulate the shape of the muscle. Several attributes are 

introduced to further specify the muscle deformer. All 

attributes and their functions are described in the previous section. It has to be noted that the 

bias matrix is an attribute that is not writable, thus it is exclusively defined by its input connec-

tion. The same can be noticed considering the input plug for the action line. 

Figure 60: Muscle deformer attributes

 In Chapter 5.1.2.4, an excerpt of the MEL script is shown that generates the dependencies 

of the action line deformer node. The MEL script creating the muscle deformer resembles the 

one of the action line deformer apart from its input connections. Following structure is created: 
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Figure 61: Input and output plugs of muscle deformer 

 

The usage of a single node to deform the muscle is the foundation for duplicating muscles. 

Thus, the entire muscular structure of the face can be set up. In the next section we discuss how 

the skin shape is governed by the muscle shape. It will become clear that increasing the number 

of vertices defining the shape of the muscle improves the result. Therefore, it is recommended 

to use a smooth shape. 

 

5.3 The Skin 

In this chapter, the deformation of skin is made the main subject of discussion. The section 

concerning experiments about the skin deformer is quite short as we achieved satisfying results 

with the second model we implemented.  

 Recently, every endeavour has been made to deform the skin driven by an external compo-

nent. We previously discussed the rigid bind method that allows a skeleton to control the skin 

deformation. This method does not include a three-dimensional voluminous object to drive the 

skin deformation. It is more likely to have joints that are parameterised by their local coordinate 

system and that control the deformation. 

 In case of a muscle-based skin deformer, we have to pay attention to the whole voluminous 

muscle geometry. In Chapter 4.5, we already commented on some approaches concerning mus-

cle-driven skin deformation. The model of Aubel (cf. Chapter 4.5.1) appears to produce results 

close to human anatomy. However, Aubel’s model lacks fast computation.  

 In the following, we expand on an experiment we conducted to approach realistic skin de-

formation without any loss of speed in terms of computation. 

 

5.3.1 Experiments 

5.3.1.1 Wrap Deformer 

First of all, we experimented with the wrap deformer provided by Maya®. Since the source code 

of this wrap deformer is proprietary, only the function of this deformer can be described. 
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 The wrap deformer allows us to control the surface of an object by a NURBS surface, a 

NURBS curve, or a polygonal mesh. These influence objects deform the driven object as soon 

as they vary their position, orientation, or shape. ”When you create a wrap influence object, Maya makes 

a copy of the influence object and uses it as base shape for the deformation. A wrap deformer can include one or 

more influence objects.” [Ali04a] 

 

 

Figure 62: Wrap deformer, NURBS sphere influences polygonal sphere 

 

See Figure 62 where a NURBS sphere influences a polygonal sphere. The left picture illustrates 

the two objects when the deformer is applied the first time. The wrap deformer provides the 

functionality to determine a maximum distance attribute that represents the threshold. Points 

exceeding this distance threshold are not influenced [Ali04a].  

 Consider the influence object being represented by a muscle shape. The skin of the face is 

the surface to deform. What is missing? The muscle deforms the skin depending on its initial 

position. The points inside the maximum distance range of every vertex are influenced evenly. 

However, real skin shows different behaviour patterns. Since we are considering visco-elastic 

material (cf. Chapter 2.3.7), the skin vertices are not tightly attached to the muscle. Besides that, 

the influence the muscle exerts to the skin is not exclusively defined by the distance between 

both but by the consistence of their materials. To allow the user determining the influence on 

every skin vertex, he is allowed to define the maximum influence. This is achieved by painting 

weights which is not provided by Maya® for this deformer. 

 Since the user is not able to access the interior of this deformer node, we decided to write 

our own skin deformer which is similar to the wrap deformer but provides some extra features. 

 

5.3.1.2 Sculpt Deformer 

The second deformer we experimented with is called the “sculpt deformer”. First, we require a 

NURBS sphere as influence object and a polygonal mesh as object to be deformed. It may be 

assumed that the sculpt deformer functions like the wrap deformer. In contrast to the wrap 

deformer, the sculpt deformer has not a set of points assigned to that depend on the maximum 
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distance threshold. Hence, the influence of the sculpt deformer is able to deform each point of 

the influenced object.  

 The sculpt deformer differentiates between three kinds of sculpting: 

 

• Flip mode 

• Project mode 

• Stretch mode 

 

However, in flip mode, only an implicit locator is provided to deform the surface. This locator 

serves to push away every vertex of the driven object until the centre of the locator passes the 

surface. The deformed surface then flips to the backside of the locator. 

 In case of being in project mode, the surface of the driven object is deformed by projecting 

the influence object on it. This means the surface of the driven object is deformed to appear like 

the influence object while being in its range of influence. 

 In stretch mode, the sculpt deformer pushes the vertices away. We assume the sculpt de-

former to compute the distance of every vertex of the driven object to its influence object. If 

this distance falls below a certain value, the vertex is pushed away. Unlike being in flip mode, the 

sculpt deformer prevents the driven object to penetrate the influence object at any time. This 

way, we can assume having a certain gap assured between the influence object and every vertex 

of the driven object.  

 Deformation based on being in stretch mode is the kind that is considered to be applied for 

a muscle-based skin deformer. It shows properties that resemble the ones of muscle and skin. 

Assume for now we have fatty tissue between the muscle and the outer skin layer, the muscle 

pushes the skin away depending the distance of the fatty tissue. The fatty tissue can even be 

compressed and bulged. 

 The sculpt deformer lacks some compulsory features. Only a NURBS sphere can be used as 

influence object. Modifying the shape of the NURBS sphere allows us to rebuild a muscle ge-

ometry. However, the muscle deformer is not able to deform NURBS surfaces. This is clarified 

considering the issue of only having access on the control vertices and not the edit points (cf. 

Chapter 4.2.3.2 and Chapter 5.1.2.3). Furthermore, painting weights to exclude vertices from 

being computed is not allowed. Finally, accessing the interior of the deformer is not enabled. 

 In the next section, we detail how we finally implemented the skin deformer. We will divide 

the chapter in separate sub-problems as the skin’s behaviour cannot be concerned at once, as 

already concluded in Chapter 2.2.4.  
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5.3.2 Final Realisation 

In this chapter, we elaborate on the final implementation of the skin deformer. As discussed in 

Chapter 2.2.4, skin shows visco-elastic properties: “Viscosity is originally a fluid property. Elasticity is 

property of solid materials. Therefore, a visco-elastic material combines both fluid and solid properties” [Gla03] 

In our system, these two properties are separately implemented. It has to be mentioned that we 

implement the Maya® deformer node applied on the skin shape and with the muscle shape as 

additional input. 

 

5.3.2.1 Elasticity (Skin Attachment) 

The work of Jian [Jia04I] serves as basis for the implementation of the skin deformer, showing 

elasticity effects. Jian introduces a model that concerns a muscle model based on ellipsoids (cf. 

Chapter 4.4.4). Since we are not dealing with ellipsoids to synthesise the muscle, some adjust-

ments are made. A polygonal mesh is used to model the skin shape. 

 To simulate elasticity effects, we have to attach the skin shape to the muscle at first. This is 

done by computing and storing the closest point on the muscle geometry to each skin vertex. 

Every computed point lies somewhere on the skin surface, not compelled to have a valid vertex 

position but located somewhere on a skin polygon. 

 The deformer provides a handle on an iterator to step through every vertex of the polygonal 

skin mesh. For each skin vertex, the closest point on the muscle geometry is computed. Our 

system determines the closest point and the polygon it is located on. The vector pointing from 

the closest point to the skin vertex is stored as well: 

 

 

Figure 63: Closest point to skin vertex 

 

Next, we create a handle on the muscle shape that allows us to iterate over each polygon 

(MItMeshPolygon). Utilising the previously stored closest points, the system associates  them with 
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each polygon so that a parameterised position can be stored. Recall Chapter 4.2.2.3 and 4.2.2.4 

where this parameterisation is further described: either we compute and store the barycentric 

coordinates or we determine corresponding UV coordinates. We decided to apply the second 

method as it does not depend on the vertex count per polygon.  

 To receive the UV position, several adjustments are made to guarantee proper calculation. 

However, in Maya®, obtained UV coordinates must not necessarily be correct. Maya® provides 

a method to obtain the according UV position for each closest point. It is recommended to 

have no overlapping polygons in UV space. Maya® provides a feature called “Layout UVs” that 

remaps UV coordinates in order to avoid overlapping polygons in UV space. Every point can 

now be uniquely assigned to the surface of the muscle. However, the system has to bypass an-

other peculiarity of Maya®. See Figure 64 where the UV coordinate in (0,0) is displayed. Given 

the closest point lying on the muscle surface with the UV coordinate (0,0), a computation error 

can be provoked. The UV coordinate of a point near the border of UV space (borders are illus-

trated by the sides of the grey square, Figure 64) are possibly flipped to the facing border. For 

example, in case of receiving the UV coordinate (0,0), it may occur that Maya® computes the 

UV coordinate (0,0.9999999). Therefore, Points close to a border can be miscalculated. Thus, 

remapping the UV coordinate to a point on the muscle surface may provoke an error. 

 

 

Figure 64: UV set of muscle shape 

 

How do we avoid producing further errors? After having determined the UV coordinate of a 

point, we test UV coordinates on being acceptable by remapping them to a point. If Maya® 

produces an error, we act on the assumption that the U or the V coordinate is flipped to the 

opposite border. We either experience the U or the V coordinate to flip. Therefore, we check 
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the point based on each of the four borders exclusively. Each time we test the UV coordinate 

on producing a valid point by remapping. If it turns out positive, the test is interrupted and the 

computation can be continued. 

 Such as the previously described deformers, this deformer is evaluated in separate passes. In 

the first pass, all necessary data is initialised. In the next pass, we generate the ultimate skin de-

formation. Such as the other deformers, it is iterated through every vertex of the polygonal skin 

mesh. To exclude vertices from computation, the weight of each vertex is ascertained. Each 

vertex with a weight of 0 is obviated for further computation. The weight will play a more cru-

cial role at a later date.  

 The skin deformer provides two attributes: “minDist” and “maxDist”. They refer to the maxi-

mum and minimum distance a skin vertex may have to its closest point on the muscle surface. 

This causes the skin deformer to exclude points that are far-off the reach of the muscle due to 

anatomical properties. At a later date, “minDist” and “maxDist” will account for the smooth tran-

sition between the deformation of skin vertices lying far away or close to the muscle. 

 Previously, for every skin vertex we stored the ID of the polygon whereon the closest point 

is located. Additionally, the UV coordinate for every closest point was retained. With both in-

formation, the point on the surface is determined. It has to be noticed that the skin deformer is 

not running through the first pass at the moment so that the shape of the muscle may not be in 

rest position but contracted. It is important to remind that varying the shape of the muscle does 

not change its configuration of UV coordinates. Hence, the previously computed closest points 

change their position but stay on the some place relating to the surface of the muscle. 

 In the next step, the system computes the smooth transition of influence on skin vertices. If 

the initial distance of the skin vertex to its closest point is approaching “minDist”, the influence 

on the skin vertex is the most. Otherwise, if it is approaching “maxDist”, it is affected with a low 

intensity:  

 

 

Figure 65: Influence on skin vertex, falloff [Jia04I] 
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Between the minimum and maximum distance, a falloff (shown in the diagram of Figure 65) 

generates a smooth transition within the deformation. 

 Finally, the new position of each skin vertex is computed. The influence falloff is from now 

on referred to as “alpha” [Jia04I].  

 

closest point
in UV

initial skin vertex

computed new
skin vertex

new point
in UV

 

Figure 66: Skin deformation based on varying muscle shape 

 

See Figure 66 where the muscle affects the skin. Given the initial closest point on the muscle 

surface, deforming the muscle influences its position. The position alteration is stored in the 

offset vector. Afterwards, the offset vector is added on the initial skin vertex depending on al-

pha and the vertex weight: 

 

// initDist         -> initial distance from skin vertex to closest point 

// ptAtUv           -> new point on muscle parameterised by UV coordinates 

// clsPts[i]       -> initial closest point on muscle 

// pt             -> skin vertex 

 

// falloff for a smooth transition in the deformation 

float alpha = ( initDist - minDist ) / ( maxDist - minDist ) * PI – PI / 2.0;  

alpha = 1 - ( sinf ( alpha ) + 1 ) / 2 ; 

 

// offset vector, new point on muscle to initial closest point 

MVector offset_vector = ptAtUv  -  clsPts[i]; 

 

// new skin vertex 

pt = (pt  + ( offset_vector ) * weight * alpha) ; 

Source Code 10: Computation of skin vertex 

 

Jian [Jia04I] includes the computation of a rotation vector for each skin vertex depending on the 

orientation of the whole muscle. Since he uses an ellipsoid to represent the muscle, it is reason-

able to have the orientation of the muscle embedded in the calculation. In case of this system, 
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there is no reason to create a dependency to the orientation of the muscle as every shape is ac-

cepted anyway. 

  The model described in this chapter simulates the elastic attachment of the skin to the mus-

cle. It is adequate for the task of generating muscle-based facial animation. The motion of the 

skin appears smooth, and authentic and in addition to that it obeys the underlying muscle. At 

the moment, the system claims to be able to run the animation in real-time. However, the skin 

deformer model lacks physical correctness at 

the moment. The system does not consider 

viscosity effects caused by the layers between 

the muscle and the surface of the skin. Until 

now, the skin is tightly attached to one point 

on the muscle. Since we have elasticity ef-

fects, not every skin vertex is deformed pro-

portionally to its corresponding muscle in-

cluding the point offset. In consequence, the 

muscle may penetrate the skin, primarily 

when it thickens. This is due to the fact that 

the skin deformer considers solely one reference point on the muscle for each skin vertex. 

Nothing prevents other muscle points from moving close to the skin that initially should not 

affect them. Thus, the muscle may penetrate the skin. 

Figure 67: Muscle penetrating skin, contraction factor 0.7

 To avoid muscle polygons to intersect with skin polygons, a certain distance between skin 

and muscle is guaranteed. In the next chapter, we discuss the previously mentioned behaviour of 

the intermediate layers between muscle and skin. We will describe viscosity effects of the fatty 

tissue in particular. These effects cause the skin to be pushed away. 

 

5.3.2.2 Viscosity (Slide Bulge) 

In Chapter 2.2.4, the function and characteristics of the skin is expanded on. Having Chapter 

2.2.4 in mind and referring to the previous section, it emerges that it makes sense to consider 

visco-elasticity effects. The viscosity effect characterises material that is fluid but has an internal 

resistance to flow. In case of the layers between muscle and surface of the skin, the viscosity 

effects make the muscle and the skin to be attached to each other not with tight references. In 

fact, the intermediate layers prevent the surface of the skin to touch the muscle. Besides to that, 

the intermediate layers are compressible so that bulge effects may be provoked. 

 In the following, the viscosity effects are described considering the displacement of the 

skin’s surface. The following model is not capable of being used in an interactive environment 

since it lacks fast computation. 
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 Recall the previously considered skin penetration by the muscle. How is a certain distance 

between skin and muscle guaranteed? As the skin deformer previously excluded some points 

from computation, only the important vertices are considered. It is iterated through every skin 

vertex and each vertex is tested on being too close to the muscle geometry. This task is per-

formed by shooting a ray away from the vertex along its normal in both directions. To avoid 

shooting two rays, a fake point is determined located along the line of the normal but more 

distant: 

 

skin vertex

fake point

 

Figure 68: Computation of fake point to only shoot one ray 

 

Given its origin in the fake point, one ray is shot to determine the intersections with the muscle 

(see Figure 68). Testing on intersection with the muscle for two rays per vertex would double 

the time-consuming computational effort. Since it is not possible to access the interior of 

Maya®’s intersect method, it can only be speculated about the computation steps of this 

method. In all probability, every polygon of the muscle is tested on intersecting with the ray.  

 However, it has to be considered that every skin vertex in the range of interest is affected. 

These vertices are tested on maintaining the right distance to the muscle. Hence, for each vertex, 

it has to be checked if its normal line is intersecting with a muscle polygon. Given a muscle with 

a convex polygonal shape, not more than two intersection points may result. 

 See Figure 68 where the intersection points (in the following referred to as “hit points”) are 

marked with a circle. For further handling, we have to consider the hit point that lies on the 

normal, pointing away from the skin surface and being the one most distant (if the skin is lying 

‘under’ the muscle). The user is allowed to define the average thickness of the intermediate lay-

ers - in the software denoted as “fatty tissue”. When a skin vertex is lying inside the muscle or 

closer to the muscle surface than limited by the thickness of the fatty tissue, the skin vertex is 

displaced along its normal. The new skin vertex is computed as follows:  
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Equation 62: Displaced skin vertex 

 

Iterating through every skin vertex causes the skin to behave similar to viscous material. As only 

vertices are taken into account for computation, polygon edges of the muscle may still appear 

outside the skin. By modifying the thickness of the fatty tissue, this can be avoided: 

 

Figure 69: Slide bulge disabled Figure 70: Slide bulge enabled 

 

In the next chapter, the architecture of the skin deformer is discussed. Such as the architecture 

of the muscle deformer, the skin deformer will be described in a nutshell as it resembles the 

muscle and action line deformer. 

  

5.3.2.3 Architecture 

In the previous sections, it might be noticed that this deformer exclusively accepts a polygonal 

mesh. Remind Chapter 5.1.2.4 and Chapter 3.1.3 where the structure of a deformer illustrated. 

Once again, similar to the muscle deformer, we are concerned with a polygonal mesh whose 

vertices are manipulated to shape the polygonal mesh. First the skin shape is modelled and then 

the deformer is applied to. To have the skin deformer governed by a muscle, the polygonal 

mesh of the muscle serves as additional input for the skin deformer. In the previous chapter, the 

additional attributes were introduced that provide further control over the skin deformation. 

These attributes can be particularly modified by changing their values. Unlike the muscle attrib-
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ute represented by an input geometry, these attributes do not require an extra input connection. 

They can be varied by changing the values in the attribute editor for this deformer: 

 

 

Figure 71: Attributes, skin deformer 

 

The MEL script that establishes the skin deformer can be derived from the MEL script respon-

sible for establishing the action line deformer (cf. Source Code 7). The structure of one skin 

deformer is shown in the following diagram: 

 

 

Figure 72: Structure of skin deformer 

 

For each muscle, one skin deformer is applied to create the structure of the system. To avoid 

muscles counteracting each other, weights should be painted in order to have the influence areas 

separated. However at this stage, we have no implementation of an automation that assumes the 

task of subdividing influence areas. A Maya® deformer allows one weight value per vertex so 

that just one influence area can be defined. 

 

The implementation of our system for muscle-based facial animation is appropriately discussed 

in this chapter. The system is developed being granular and modular so that it enables further 

enhancements. Each deformer node uses common object-oriented design patterns allowing a 

software developer to reuse, derive, or extend existing functionality.  

 In this chapter, we elaborated on the status quo of our software and its underlying theories. 

However, the system can be further improved. In the following chapter, first the results of this 

software will be discussed. We will provide some proposals to improve and optimise the system. 

In addition to the proposals, we will address some points concerning this system in terms of 

future work. We will bridge to other fields of research. 
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6 Conclusion 

“To finish a work? To finish a picture? What nonsense! To finish it means to be through with it, 

to kill it, to rid it of its soul, to give it its final blow the coup de grace for the painter as well as for 

the picture”1

 

In this chapter we assess a system for muscle-based facial animation. In addition, we go one step 

further and provide ideas and theories how the system can be improved and extended. The 

system allows us to animate facial expressions on the basis of anatomical characteristics. As the 

time to develop the software was limited, the implementation is subject to restrictions in terms 

of its extent. Developing additional features that we considered to be unessential would have 

gone beyond the scope of this thesis as well as adding features that are not immediately con-

cerned with the task of muscle-based facial animation.  

 The following, results of our implementation will be under consideration. Based on the 

results, in Chapter 6.2, we will have a foresight of how the system can be extended and con-

veyed into other scientific areas. Altogether it will turn out why muscle-based animation of facial 

expressions makes sense. 

 

6.1 Results 

The concept we developed for the software could not always be immediately realised. Some 

models we discussed in the experiment sections did not suffice to produce convincing results. 

However, the results of the software we ultimately implemented are promising so far. Two ma-

jor guidelines were crucial in the development of the software. The software should produce 

persuasive facial animation in terms of appearance. Furthermore, the system should be usable in 

real-time. The software now meets both requirements. 

 The software is technically mature enough to establish a system of several muscles to ani-

mate facial expression. At the moment, it is a time-consuming task to establish a muscle-based 

system incorporating each and every facial muscle. To this date, it is an elaborate task fine-

tuning the system to guarantee authenticity in appearance of facial animation. In Chapter 6.2, we 

provide some approaches that speed up the development of a sufficiently established system. 

                                                                                                                     
1 Pablo Picasso 
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 Previous research has already been undertaken in the realms of anatomically-based anima-

tion. Even anatomically-based facial animation was already concerned. This thesis achieves to 

balance different existing approaches, analysing them to compose a completely new model. The 

results of other systems concerning muscle-based facial animation made it possible for us to 

develop a more sophisticated model whose promising results are illustrated in Chapter A.1.1. 

  

In the following, we recapitulate our final proposals we implemented and tested in a system for 

muscle-based facial animation: 

 

• We implemented the action line by applying a mass-spring system that allows us to stretch 

the action line at an arbitrary point and to generate swing and collision effects.  

• Our system enables the action line to contract along itself. 

• We introduced a model that enables the use of Maya® NURBS curves of degree 1 to con-

trol a smooth cubic NURBS curve. 

• We provided a model that allows the action line to control the muscle shape based on the 

“smooth bind” method. 

• We created an implementation for generating the muscle bulge based on a Gauss curve. 

• Our software enables the skin to be attached to the muscle based on elasticity effects. 

• The system allows viscosity effects to be simulated by maintaining a certain distance be-

tween muscle and skin. The user can chose whether to compute these effects as they are 

rather laboriously computed. 

• Finally, we described how to create a muscle-based system for facial animation in terms of a 

modular and granular software architecture. 

 

In the next chapter, we discuss the work that can be done in the future. We bridge to other 

scientific areas. First, we provide information about how to extend the present software. 

 

6.2 Future Work 

As previously noted, this system can be ported and extended. This section comments on three 

different issues. The first concerns the optimisation of the system, the second is about portabil-

ity of the setup and the last will address other research activities. 
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6.2.1 Optimisation 

This section concerns our software in terms of optimisation. Extensions provided in this chap-

ter were not deemed essential for a muscle-based system. Nonetheless, to perfect the existing 

system, we provide some approaches that could serve as vantage points. 

 

6.2.1.1 Collision Detection 

At the moment, collision detection is not incorporated. Even if facial muscles intertwine or 

repel each other, our system concerns this kind of collision by grouping muscles. However, to 

adhere to physical accuracy, each muscle has to react on colliding with other components. As 

previously commented on, the muscle shape itself cannot react on collision. 

 One way to detect a collision is to test every edge of a muscle if it intersects with the poly-

gon of another component such as another muscle or the skull. This can be done by using a ray-

polygon-intersection method similar to the one provided in Chapter 5.3.2.2. The information of 

the collision detection is propagated back to the action line. Having established a connection 

from the muscle deformer to the action line deformer, a dependency cycle may occur conse-

quentially leading to an error. The action line deformer itself has to detect collisions. To avoid 

creating a dependency cycle, the action line could work on an instance of the muscle shape so 

that in case of collision detection only the original muscle shape is affected. However, as alluded 

to above the ray-polygon-intersection method is a very slow computation method since it uses 

complex iteration steps.  

 To react on collision detection, the point of collision is computed. This point is projected 

onto the action line. Translating this point on two adjacent control points, the weighed forces 

on these control points can be defined. Due to these forces, the mass-spring system of the ac-

tion line reacts on collision. 

 

 Another simpler and less time-consuming algorithm represents the collision detection by the 

action line itself. Therefore, rough bounding boxes for each action line segment are initially 

determined. Their dimension depends on the segment length and the average distance of each 

muscle vertex to its projected action line point. By referring to the world space coordinate axis, 

each segment gets an approximate bounding box assigned.  

 Having pre-estimated each adjacent muscle’s bounding box, it can be tested if it is inside a 

bounding box of the particular muscle. When a collision is detected, the action line reacts by 

exerting a force to the corresponding point of the action line as previously described. 

 

   Aubel provides an approach that can well be used to compute collision detection (cf. 

Chapter 4.4.7.1). He uses force fields that are formed by ellipsoids. They immediately affect the 
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mass-spring system. He differentiates between repulsive and attractive force fields. Repulsive 

force fields prevent the action line from penetrating the ellipsoid; the attractive force fields are 

applied to refine the shape of the action line. 

 In contrast to Aubel’s model, we recommend the use of locators that define spherical force 

fields and that can be connected to the action line deformer. This would simplify the organisa-

tion and computation of collision detection. 

  

6.2.1.2 Jiggle 

The system is not able to react on forces that cause the muscle to swing. External forces in-

duced by shocks such as a punch in the face, abrupt actions of the whole head, or gravity may 

jiggle a muscle or the skin. Since in our system the muscle is already based on a mass-spring 

system, we only consider the swing of the muscle. 

 Recall the description of the mass-spring system that controls the action line (cf. Chapter 

5.1.2.1). The system runs in an environment not depending on time. However, swinging is a 

time-dependent action. Unlike in our model, a swinging mass-spring system cannot be evaluated 

iteratively. The time factor must be concerned by the system. To finally implement swinging 

effects, the position of a particle of the action line does not exclusively need to be computed 

based on its previous position. For each particle, the velocity and acceleration factor are intro-

duced (cf. Chapter 4.4.5). The external forces are conveyed to be embodied by the acceleration 

of an action line particle. Having defined additional factors like damping and spring stiffness, 

the jiggle of the muscle can further be refined. Forces are applied to particles affected by other 

objects. These particles are commonly considered to represent the origin or the insertion. 

 

6.2.1.3 Skin Deformation Improvement 

In this chapter, we elaborate on the improvement of the skin deformation in terms of physical 

accuracy. The model provided in Chapter 5.3.2 allows us to be perfected. The elasticity of the 

skin is described considering its attachment to the muscle. 

 Given a skin composed of a polygonal mesh. Every vertex of the mesh represents a particle 

in a mass-spring system. This mass-spring system is applied on each particle whereas particles 

are connected to each other. Referring to Chapter 4.4.5, where Nedel and Thalmann [NT98] 

presented an elasticity model for a muscle. This model can be applied to the skin. If the mesh 

consists of polygons with a count of three or four edges, every vertex is linked by four springs 

to its adjacent vertices. The force on the particular vertex is defined by the sum of all four 

forces. Utilising angular springs (cf. Chapter 4.4.5), the system can prevent the skin from twist-

ing or bending. In addition to our existing system, the appearance of the skin can be kept 

 
118



 

Chapter  6 - Conclusion 

smooth. It has to be pointed out that applying a mass-spring system on each skin vertex slows 

down the system tremendously. 

 

 Another way to improve the deformation of the skin is to extend the simulation of viscosity 

effects. The system attempts to preserve the distance between muscle and skin. Therefore, the 

distance to the muscle is computed for every skin vertex and at every moment. The same can be 

done reversely: each muscle vertex can be tested on being distant enough from the skin. The 

computational effort would nearly be the same. Finally, to guarantee physical correctness, the 

maintenance of distance between the muscle and the skin is considered in both directions: mus-

cle vertex to skin and skin vertex to muscle. For example, if the mesh of the skin is less finely 

woven than the muscle mesh, the muscle may penetrate the skin when being deformed. To 

create viscosity effects, the approach provided by Aubel (cf. Chapter 4.5.2) is considered best 

but most complex. 

  

6.2.1.4 Wrinkles 

“The process of wrinkle formation can only be simulated by including viscosity, though.” [Kae03] We deem 

this statement as being true to certain degree. The simulation of wrinkle formation can only be 

done considering viscosity if we adhere rigidly to physical correctness. For instance, Wu and 

Magnenat-Thalmann provide such an intricate model to generate wrinkles based on plastic-

visco-elastic effects [WM98]. 

 In Chapter 4.4.2, we exemplify a model for generating wrinkles based on a single layer. This 

model can be utilised in our system. The model described in Chapter 4.4.2 uses a vector to rep-

resent the muscle. This vector and its influence area serves to apply a certain wrinkle function to 

the skin (see Figure 23, right and Equation 26). Likewise, the wrinkle function can be applied in 

our system. Therefore, the action line is projected onto the skin. The wrinkle function can then 

be aligned to the projected action line. The wrinkle function should be exclusively applied when 

the action line contracts. The amplitude of the wrinkle function depends on the contraction 

factor of the corresponding action line. 

 The generation of wrinkles shapes up as being difficult to display when having a coarse 

polygonal mesh of the skin. The wrinkle is only visible if its generator function is able to grab a 

vertex for each feature point of its function curve (see Figure 23, right). Otherwise, the wrinkles 

do not appear properly.  

 

 The wrinkles can also be displayed by using bump maps. Wrinkles created by facial expres-

sions appear by driving in bump maps that exclusively show wrinkles of the according expres-

sion. To automatically generate these bump maps for each facial expression, wrinkles are com-
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puted using the function previously described. The wrinkles are translated from 3D to 2D space 

of by producing a relief picture.   

 

Wrinkles are an important part of 3D facial animation as they enormously contribute to believ-

able facial expression. In addition to that, skin aging can be simulated via simulating wrinkles. 

Wrinkles also play an important role in dermatological and forensic contexts (cf. Chapter 6.2.3) 

 

6.2.1.5 Application of Motion Capture Data 

At the research project “Artificial Actors” at the Filmakademie Baden-Württemberg, the idea of 

using motion capture data to animate facial expressions already exists [HBSL04]. Based on this 

idea, it must be possible to translate motion capture data to our system to control muscles. 

However, motion capturing can only take place on the surface of the facial skin.  

 Focusing on the two attachment points of a parallel muscle, especially the insertion, these 

are the major feature points which we have to pay attention to. These feature points are pro-

jected on the skin to obtain the target position of the markers which are motion captured. This 

process can be reversed, by starting from markers at arbitrary positions or anthropometric 

landmarks and translating these back to the control points of the muscle. 

 

 

Figure 73: Computing trajectory by translating  
closest motion capture markers 

 

See Figure 73 where the computation of the trajectory of the insertion is sketched. Given a set 

of motion capture markers, for each marker, a certain trajectory is captured. The trajectory of 

the insertion is computed similar to the “smooth bind” method (cf. Chapter 5.2.2.1). In addition to 

the method we previously described, the control points of the action line can now be driven by 

more than two markers. This is due to the fact that the markers and the control point of the 

action line are located in 3D space. It has to be stated that computing the trajectory of the inser-
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tion must not necessarily yield a correct result as we omit the thickness of the skin in this calcu-

lation. It would only be correct if the projected point of the insertion on the skin’s surface is 

taken into account. To have the insertion controlled by the closest markers, the influence of the 

markers on the insertion are computed by determining differing distances from the markers to 

the insertion projected on the skin surface (see Figure 73). This way, weights can be computed 

in order to smooth bind the insertion to markers (cf. Chapter 5.2.2.1, particularly Equation 56 

and Equation 57).  

 Another indirect way to bind the insertion to the markers is to transfer the trajectories of 

the markers to joints. These joints are smooth bound to the skin mesh (cf. Chapter 4.3.3.2). The 

insertion of the muscle is finally constrained to the skin mesh which has the same effect. How-

ever, the skin mesh may only serve as intermediate reference object since the final deformation 

caused by the muscles may not affect this skin mesh. Affecting this skin mesh it could run the 

risk of having a cycle dependency. 

 Finally, the trajectories of the markers can be adapted using the same mechanism as intro-

duced in Chapter 4.3.4. Having captured all basic expressions based on Ekman’s FACS [Ekm78] 

presented in Chapter 4.1.1, the system is extended in a manner that allows us to create almost 

every facial animation in a quality that can compete with real facial actions. Ultimately, the sys-

tem is user-friendly in such a way that it works almost automatically. 

 In the next section, we will address the issue of portability of the system. At present, con-

structing the muscle-based system for the whole face is very time-consuming. Instead of provid-

ing a method to easily revise the entire system, we introduce a mechanism that simplifies the 

transfer from a head geometry to a completely different target head geometry. 

 

6.2.2 Portability 

The research project “Artificial Actors” at the Filmakademie Baden-Württemberg is a combined 

effort of artists and computer scientists creating tools that ease the generation of authentic facial 

animation. This includes not only to facilitate the handling of animation tools but to make them 

usable on every target object. On the following pages, we will demonstrate some approaches 

that allow cloning the present system on a source geometry to a different target shape. 

 First, we will make some proposals considering the easy set up of the system. To establish 

the system it may be useful to refer to “The Visible Human Project®” [VHP86I] that provides 

realistic 3D voxel data models of the anatomy of the head. These models allow the facsimile of a 

genuine human. Thus, the skull, the muscles, and the skin can be prepared. Next, the action 

lines of each muscle are defined. Finally, all deformers are applied including all required locators 

that control the animation. 
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 Realistically, setting up the parameters of the entire system can be a cumbersome task. 

However, if it is once made it can be reused. In the following we will present a method that 

enables the system to be transferred on a completely different target geometry. 

 

6.2.2.1 Geometry Matching 

Consider Chapter 4.3.2.1, where the thin plate spline RBF morpher is discussed. This approach 

serves to morph a geometry onto a completely different target geometry. Based on locators 

placed on anthropometric landmarks on the source and target head, the source head is fitted to 

the target head. In Chapter 4.3.2, we devoted the use of this method to clone expressions with 

the use of this method. This time, the technique is extended to fit each component of the sys-

tem to animate muscle-based facial expression on a target head. Each element controlling the 

facial animation is based on a set of vertices located in world space. The skull, the muscle, and 

the skin consist of polygonal meshes hence they consist of a set of vertices. The action line is a 

NURBS curve of degree 1 that means it is composed of a set of vertices as well. Finally, the 

system includes locators that constrain components and stick the system together. 

 Having placed the locators (cf. Chapter 4.3.2.1 and see Figure 17), the RBF morpher can be 

applied. Now, as we are concerned with a more complex setup, the RBF morpher is applied on 

each component. The source setup is fitted into the target geometry of the head. To make the 

system usable, all parameters controlling the action line, muscle and skin deformation have to be 

further tweaked. After all of these adjustments, one component is missing. In Chapter 5.3.2.1, 

the deformation of the skin concerning elasticity effects is discussed. To exclude skin vertices 

from being driven by a muscle, a weight for each vertex is defined. Maya® provides a tool that 

allows to paint weights. In the next chapter, we will show how to clone skin weights to the tar-

get geometry. 

 

6.2.2.2 Skin Weights Cloning 

To define the degree of influence the muscle has 

on the skin, each skin vertex has a weight as-

signed to it. The weights of the entire skin can 

easily be defined by using the “Paint Attributes 

Tool” provided by Maya®. The weights for a 

muscle, for example the zygomaticus major (see 

Figure 6), are depicted in Figure 74.  

 In the previous chapter, we already fitted the 

system into a target head geometry. Having all 

necessary information gathered to apply the RBF Figure 74: Weights of zygomaticus major 
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morpher, cloning weights of the source skin to the target skin can also be performed. To clone 

skin weights not only the RBF morpher is applied, but the skin mesh is fitted to the target skin 

mesh. This process is exemplified in Chapter 4.3.2.2.  

 If the source skin is fitted to the target skin, the target skin vertices lie on the source skin but 

not necessarily on source skin vertices. Resembling the approach in Chapter 4.3.2.3, the source 

skin mesh is triangulated. To give the target skin vertices a unique assignment to the source skin 

triangles, barycentric coordinates (cf. Chapter 4.2.2.3) are computed. With the barycentric coor-

dinates, the resulting weight of the target skin vertex can be calculated. See Figure 12 which 

signifies how the point in the triangle obtains its skin weight. Therefore, the weight of a target 

skin vertex is calculated using its three surrounding points of the triangle of the source skin 

mesh. All surrounding triangle vertices have one value for the weight and by utilising barycentric 

coordinates as coefficients, the resulting weight of the target skin vertex can be summed up 

(similar to Equation 23) : 
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Equation 63: Calculation of skin weight 

 

Having all components of the system and the skin weights fitted to the target geometry, the 

cloned system is ready to use. Thus, the workflow of setup creation is tremendously expedited. 

The system can therefore be applied on every character that resembles anatomical structure. 

 

6.2.3 Other Research Activities 

6.2.3.1 Criminology and Forensic Reconstruction 

In the domain of criminology, many scientists are engaged in recognition, construction, and 

extension of facial models. Up to the present, if a witness has to identify a face, artists draw an 

image based on the instructions of the witness. Therefore, identikit systems serve to ease crea-

tion. If the witness instead has to recognise a face out of a group of similar looking persons, 

resembling test persons have to be hired.  

 Meanwhile, computer generated simulations make it possible to find a remedy. In the major-

ity of cases, it is a matter of 2D graphics. Several efforts have been made to improve computer 

generated 2D images to create convincing faces based on identikit systems. Nowadays, 3D 

computer graphics come into operation to simulate head models. Several techniques have been 
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introduced in this thesis to create (cf. Chapter 4.2.2.1) such head models and to finally animate 

them (cf. Chapter 4.3). In reality, these models do not suffice to guarantee anatomical accuracy. 

Furthermore, these models have no easy to handle parameterisation that allows us to vary the 

appearance of the face and its resulting facial animation.  

 Based on our system, faces looking like living humans can be created and animated. Show-

ing animated facial expressions may simplify the identification of a person. Additionally, movies 

can be produced with real actors apart from the face, which can then be replaced by a com-

puter-generated model created by our system. 

 

Remember the tsunami disaster that devastated South-East Asia in December of 2004? Count-

less humans lost their life. Afterwards, some of the dead could hardly be identified, as portions 

of the face were destroyed. Furthermore, a cadaver decays over time and eventually all that re-

mains is the skeleton. The skeleton is only an indicator how the face might have looked during 

life. Hence, another field of application for our system is presented: forensic reconstruction. 

 Based on a 3D scan of the skull, our setup can be applied. Recall the chapter about portabil-

ity of our system (Chapter 6.2.2). The RBF morpher is applied by the use of locators that are 

placed on anthropometric landmarks on the skin. However, the same outcome can be achieved 

by placing the locators on feature locations on the skull. Thus, the system is fitted to a target 

skull. Modifying parameters of the system may generate a facsimile of the original face. Now the 

face can be identified by dependents or other concerned persons. 

 Another area of application for our system is the reconstruction of creatures for the realms 

of palaeontology, archaeology or other historical and scientific purposes. Famous dead persons 

or, for example, Oetzi the Iceman can be revived. 

 

6.2.3.2 Plastic Surgery and Dermatology 

Planning plastic surgery or minimal invasive medical procedures is a complex task as anatomical 

behaviour of body parts is laborious to simulate. Our system can serve to imitate physical char-

acteristics of the muscles and the skin. For plastic surgery, the skin deformation and final ap-

pearance can be realistically simulated. Traditional preoperative planning and predictions of 

results of surgical invasions was limited to 2D space. Complicated minimal invasive medical 

procedures may cause damage if they are not adequately premeditated. Using our system we do 

not have restrictions in space. Since scaling is an affine transformation, we can zoom into our 

system of muscles and skin ad finitum. Based on geometries in 3D derived from a model gener-

ated by computer tomography (CT) scanning or magnetic resonance imaging (MRI), our system 

accounts for guaranteeing anatomical and physical accuracy. “However, the main goal of computer 

assisted surgery (CAS) is to simulate physical interactions with virtual bodies. In particular, the realistic simula-
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tion of soft tissue deformations under the impact of external forces is of crucial importance.” [Gla03] As our 

system can be interactively run, not solely planning is made possible but also the accompanying 

simulation of the invasion is enabled. 

 

Another important field of research where our system can be applied is dermatology. Skin aging 

can arise from both biological properties and from environmental impacts. The age of the skin 

can be recognised by its colour or its texture. Wrinkles usually signify an advanced age. Recall 

Chapter 6.2.1.4 where a model generating wrinkles is introduced.  

 The older a person grows, the less elastic the skin gets (cf. Chapter 2.2.4). That means that 

wrinkles caused by facial actions may remain. Consequentially, the wrinkles and thus skin aging 

can be modelled utilising our system. Consider a young person is missing: the appearance of the 

person after many years can be simulated. Hence, we can bridge to criminology too as in this 

domain it may occur that pictures of missing people have to be generated; even after many years 

have passed. 

 

6.2.3.3 Robotics and Artificial Intelligence 

Our system may be employed in the area of robotics and artifi-

cial intelligence. Human-machine systems play an increasingly 

important role in dealing with artificial intelligence. In this con-

text basically in the area of robotics, facial expressions have to 

be considered when creating human-machine interaction. One 

good example is the development of “Kismet”, a robot that is 

provided with visual, auditory, and proprioceptive sensory in-

puts [MIT00]. This robot is able to engage people in natural and 

expressive interaction.  

 Another example of a robot having the ability to show facial 

expressions is the first “face robot” called “Roberta”, created by 

Professor Fumio Hara of the Science University of Tokyo 

[Har00]. The robot is controlled by 24 hydraulic cylinders (see 

Figure 75) which allow the robot to show the six major facial 

expressions (cf. top categories of facial expressions in Chapter 

4.1.1). Based on the six common expressions, “Roberta” is able to show a realistic imitation of 

human facial actions. This is one component to approach to creating authentic human-

computer interaction. 

Figure 75: "Roberta" [Har00]

 Plantec presents his work about “Virtual Humans” that attempts to provide guidelines how 

to create the illusion of intelligence [Pla03]. This is done by believable facial expressions and the 
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ability to handle question and answer interaction. Plantec refers to avatars that are virtual repre-

sentations of humans, particularly in the space of the internet. He describes how to provide 

them with human behaviour and how to make them interact.  

 To create realistic human-machine interaction, the machine has to adopt human attributes. 

Showing facial expressions is one of the most significant components involved in creating the 

illusion of a real human being. Our system is able to help reduce the effort involved in creating a 

construction plan for something like an avatar or a robot being able to interact with humans. It 

helps to virtually simulate facial expressions based on anatomical and physical accuracy. Utilising 

a real robot also allows for the adherence to the laws of physiques. To save time in testing and 

experimenting, the system can reasonably be utilised to predict results. 

 

6.3 Final Prospects 

The model and the additional information provided in this thesis offer an incentive to further 

research in the domain of facial animation. The results of this work encourage continuing the 

investigation in muscle-based facial animation. The capability of extending our work in terms of 

computational efficiency, usability, and authenticity has become evident. Over the years, com-

puting power increases so that some aspects mentioned in this thesis can be reconsidered in 

time.  

 At present, we are satisfied that this work presents the best methodology considering all 

demands that we previously made on this process. All approaches detailed in this work offer 

various opportunities for development. As sure as fate, many researchers will follow and meet 

the challenge of creating authentic facial animation. 
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A. Appendix 

A.1. Imagery 

A.1.1. Maya® Plug-In for Muscle-Based Facial Animation 

In the following, some illustrations are depicted that show the bottom to top development of a 

muscle-based facial animation: 

 

Figure 76: Action line Figure 77: Action line and muscle 

 

Figure 78: Action line, muscle and skin Figure 79: Action line, contracted muscle and skin 
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A.1.2. Expression Repertoire 

In this section we show exemplary image concerning the expression repertoire that is created at 

the research project “Artificial Actors” at the Filmakademie Baden-Württemberg and that is in a 

stage of completion ( http://research.animationsinstitut.de). The following shows the six 

major emotional expressions: 

 

 

Figure 80: Six major emotional expressions 
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A.2. Single Actions Units of FACS 

In the following, each action unit (AU) is listed. This table is taken from the investigator’s guide 

of the FACS [Ekm78]: 

 

AU Number FACS Name Muscular Basis

1 Inner Brow Raiser Frontalis, Pars Medialis

2 Outer Brow Raiser Frontalis, Pars Lateralis

4 Brow Lowerer Depressor Glabellae; Depressor Supercilli; Corrugator

5 Upper Lid Raiser Levator Palpebrae Superioris

6 Cheek Raiser Orbicularis Oculi, Pars Orbitalis

7 Lid Tightener Orbicularis Oculi, Pars Palebralis

8 Lips Toward Each Other Orbicularis Oris

9 Nose Wrinkler Levator Labii Superioris, Alaeque Nasi

10 Upper Lip Raiser Levator Labii Superioris, Caput Infraorbitalis

11 Nasolabial Furrow Deepener Zygomatic Minor

12 Lip Corner Puller Zygomatic Major

13 Cheek Puffer Caninus

14 Dimpler Buccinnator

15 Lip Corner Depressor Triangularis

16 Lower Lip Depressor Depressor Labii

17 Chin Raiser Mentalis

18 Lip Puckerer Incisivii Labii Superioris; Incisivii Labii Inferioris

20 Lip Stretcher Risorius

22 Lip Funneler Orbicularis Oris

23 Lip Tightner Orbicularis Oris

24 Lip Pressor Orbicularis Oris

25 Lips Part Depressor Labii, or Relaxation of Mentalis or Orbicularis Oris

26 Jaw Drop Masetter; Temporal and Internal Pterygoid Relaxed

27 Mouth Stretch Pterygoids; Digastric

28 Lip Suck Orbicularis Oris

38 Nostril Dilator Nasalis, Pars Alaris

39 Nostril Compressor Nasalis, Pars Transversa and Depressor Septi Nasi

41 Lid Droop Relaxation of Levator Palpebrae Superioris

42 Slit Orbicularis Oculi

43 Eyes Closed Relaxation of Levator Palpebrae Superioris

44 Squint Orbicularis Oculi, Pars Palpebralis

45 Blink Relaxation of Levator Palpebrae and Contraction of Orbicularis Oculi,
Pars Palpebralis

46 Wink Orbicularis Oculi

 

Table 3: Single Action Units (AU) [Ekm78] 
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A.3. How to Establish the Development Environment 

A.3.1. Installation Alias Maya® 6.0 

In order to install Maya® and successfully run our plug-in, the system has to fulfil some re-

quirements: 

 

• Operating system: Windows® XP Professional, Service Pack 2 

• CPU: Intel® Xeon™ CPU 2.66 GHz 

• RAM: 2 GB 

• CD-ROM Drive: Yes 

• Graphics Card: NVIDIA® Quadro FX 1000 (Hardware-Accelerated OpenGL®) 

• Disk Space: 450 MB 

 

Being provided with administrator privileges, the installer can be run.  

 

A.3.2. Installation of Visual Studio .NET for C++ 

Since it does not demand to be run in real-time, the system has less special minimum require-

ments. The only requirement that has to be mentioned is a minimum of 900 MB disk space. 

 Visual Studio .NET can now be installed. It has to be emphasised that Visual C++ has to be 

chosen. If Maya® is installed after having Visual Studio .NET established, Maya® automatically 

creates a wizard that helps to set up a default Maya® plug-in. To finally develop a Maya® plug-

in, the wizard guarantees that all required libraries are linked to the created project. 

 

A.4. Operating Instructions 

Having .NET and Maya® installed, all necessary files can be copied from the enclosed CD-

ROM. In the “MBFA” folder, five subfolders can be found: “extra”, “dev”, “docs”, “files”, “scripts”. 

In “docs” the PDF-File of this thesis is located. In “extra”, supplementary information can be 

found such as film material. In “scripts”, the MEL script to apply the deformer can be found. 

“files” contains the Maya® binaries that show the results we yielded in this work, the muscles in 

particular. 

 First of all, we devote ourselves to the “dev” directory that contains necessary source code to 

develop the plug-in presented in this thesis. The entire folder can be copied to hard disk. In this 

folder, open “dev.sln”. This will open the entire project in .NET.  

 Based on the location Maya® has been installed to, some adjustments have to be made con-

cerning the project properties: The “Additional Include Directory” have to be adapted to conform 

to the present Maya® location. Furthermore, “Output File” and “Additional Library Directories” has 
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to be concordant with the existing Maya® installation. Now, the project can be compiled gener-

ating the plug-in. 

 This process can be bypassed by directly copying the file “mbfa.mll” to the Maya® plug-ins 

folder: 

 
   %MAYA_LOCATION%/bin/plug-ins 

 

The plug-in file can be found on the CD-ROM in the directory “MBFA/dev/Release/..”. Next, 

the system settings have to be modified. In the next step, set the environment variable 

“MAYA_PLUG_IN_PATH” to the folder you copied the plug-in to. The plug-in can now be 

loaded into Maya®. Choose “Windows Settings/Preferences Plug-in Manager mbfa.mll”. 

 Having loaded the plug-in, you can pay attention to the MEL script setting up the according 

deformers. To do so, copy “MBFA/scripts/mbfaCreateSystem.mel” to: 

 
    C:/WINNT/Profiles/%USER%/maya/6.0/scripts 

 

In your system settings, the environment variable “MAYA_SCRIPT_PATH” has to be set to 

the directory the script is copied to. 

 Copy the Maya® binary files “MBFA/files/*.mb” to a scenes directory. For example: 

  
    C:/WINNT/Profiles/%USER%/maya/projects/mbfa/scenes/ 

 

If Maya® is started and the plug-in is loaded, the file “cleanHank.mb” can be opened. The script 

“mbfaCreateSystem.mel” has to be sourced. This is done by opening the “Script Editor” and clicking 

“File Source File…”. Choose the script and execute it by typing “mbfaCreateSystem;” in the “Script 

Editor”. The entire system is now established taking some time to initialise. The weights for the 

skin deformer are not defined yet so that the animation does not look persuasive. Use the “Paint 

Attribute Tools” to define the influence of the muscle on the skin. By modifying the deformer 

attributes, the animation can further be tweaked. 

 If setting up the system is required to be avoided, open “finalHank.mb”. All weights are 

painted and adjustments are made that guarantee a proper muscle-based facial animation. 

 In “mbfaCreateSystem.mel”, several other functions can be found that allow to create different 

kinds of muscles. All necessary information how they have to be used can be gathered from the 

descriptive inline documentation in this script. 
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A.5. Glossary 

In the following, some terms are listed that occur in this thesis and that might be incomprehen-

sible. Most of the definitions are taken from Wikipedia [Wik01I], MSN Encarta [MSN05] and 

mathworld of Wolfram [WolNDI]: 

 
anthropometric Anthropometry literally means "measurement of humans". In physical anthropology it refers 

to one aspect of human variation: The different body sizes and proportions of individuals 

belonging to different populations. 

affine transformation An affine transformation is any transformation that preserves colinearity (i.e., all points 

lying on a line initially still lie on a line after transformation) and ratios of distances

bumpmapping Bump maps are textures in greyscale that are put on objects to create the illusion of sur-

face relief without reshaping the surface 

collagen The main protein of connective tissue. It has great tensile strength, and is the main com-

ponent of ligaments and tendons. It is responsible for skin elasticity, and its degradation 

leads to wrinkles that accompany aging. Collagen also fills out the cornea where it is pre-

sent in crystalline form. (De.: das Kollagen)

convex Shape of a surface curving outward, or toward the eye. Every interior angle of a convex 

polygon is less than 180° 

FK Forward kinematic: Positions of particular parts of a hierarchy of limbs and joints to a 

particular time are computed from the orientation and position of the object, together 

with any information of the joints. 

heuristic In computer science, a heuristic is a technique designed to solve a problem that ignores 

whether the solution is provably correct, but which usually produces a good solution or 

solves a simpler problem that contains or intersects with the solution of the more com-

plex problem. (De.: Heuristische Methode) 

IK Inverse kinematic: Computation of the required behaviour of a hierarchy of limbs or 

joints, so that the end effecter can be moved to a certain location 

isosurface An isosurface represents a surface of constant value (e.g. pressure, temperature, velocity, 

density) within a volume of space. 

mastication The process of chewing (De.: Kauvorgang) 

minimal invasive Medical procedure is defined as one that is carried out by entering the body through the 

skin or through a body cavity or anatomical opening, but with the smallest damage possi-

ble to these structures. 

NURBS Non-uniform Rational B-spline, cf. Chapter 4.2.3 

ODE Ordinary Differential Equations is an equation that contains a function like y=f(x) and is 

derivable. It involves x, y, y’, y’’, … (De.: Differentialgleichung) 

partial derivative The derivatives of a function of multiple variables (De.: Partielle Ableitung) 

physiognomy A pseudoscience, based upon the belief that the study and judgement of a person's outer 

appearance, primarily the face, reflects their character or personality. (De.: die Physiogno-

mie, der Gesichtsausdruck)

proprioceptive Proprioception is the sense of the position of parts of the body, relative to other 

neighbouring parts of the body 
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singularity The failure of a manifold structure. For example the non-existence of differentiability. A 

matrix is said to singular when two or more rows are linearly dependent (De.: Singularität)

UML Unified Modelling Language, a non-proprietary, third generation modelling and specifica-

tion language to visualise construct and document the artefacts of an object-oriented 

software.  

vertices A point in 3D space with a particular location, usually given in terms of its x, y, and z 

coordinates. It is one of the fundamental structures in polygonal modelling: two vertices, 

taken together, can be used to define the endpoints of a line; three vertices can be used to 

define a planar triangle. (De.: Scheitelpunkt, Eckpunkt) 

visco-elastic Having viscous (De.: dickflüssig) as well as elastic properties. 

voxeling A voxel is a volume element, representing a value in three dimensional space. This analo-

gous to a pixel, which represents 2D image data. 
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